Article contents
XIII.—On the Size of the Particles in Deep-sea Deposits
Published online by Cambridge University Press: 15 September 2014
Summary
A new method for the mechanical analysis of soils and deposits has been developed. It consists in weighing, from time to time, on a specially constructed balance, the amount of sediment accumulated on a circular disc suspended from the balance near the bottom of a vessel containing an aqueous suspension of the sample. From the “accumulation-curve” thus obtained one finds by a series of mathematical operations a “distribution-curve,” i.e. a curve showing how the amount of particles of a certain size varies with the latter quantity.
This method has been applied to the study of some deep-sea deposits from the Challenger Office. The distribution-curves thus obtained show marked differences for the different samples, and reveal a surprising lack of very fine particles in the deposits from the largest depths, besides suggesting interesting problems for new research.
- Type
- Proceedings
- Information
- Copyright
- Copyright © Royal Society of Edinburgh 1917
References
page 219 note * Den danske Ingolf-Expedition, Bd. i, 3, Havbundens aflagringer af O. B. Bøgghild, S. 18–24, Kjøbenhavn, 1899.
page 219 note † Résultats des campagnes scientifiques, etc., par Albert I, fasc. xix, “Etude des fonds marins, etc.,” par J. Thoulet, Monaco, 1901. See also J. Thoulet, “Analyse mécanique des sols sous-marines,” Annales des Mines, avril 1900.
page 220 note * Bodenkunde, Berlin, 1905, S. 56.
page 220 note † For further particulars see Internat. Reports on Pedology, vol. v, 257–312 (1915).
page 221 note * This term is used in the Maxwellian sense, i.e. to represent how the number of particles of a certain size varies with that quantity, or rather how the particles are distributed amongst the different sizes.
page 221 note † “Ueber die Bestimmung der Häufigkeitsverteilung der Teilchengrössen in einem dispersen System,” Koll. Zeitschr., ix, 259–261 (1911).
page 221 note ‡ Cambr. Phil. Trans., viii, 287 (1845); ix, 8 (1851); Mathematical and Physical Papers, vol. i, 75.
page 222 note * “The Motion of a Sphere in a Viscous Fluid,” Phil. Magazine (5), 1, 323–338 (1900).
page 222 note † Limitations imposed by Slip and Inertia Terms upon Stokes's Law for the Motion of Spheres through Liquids,” Phil. Magazine (6), xxii, 755–775 (1911).
page 222 note ‡ “Ueber die Gültigkeit des Stokes'schen Gesetzes, etc.,” Arkiv f. Matematik, etc., edited by K. Svenska Vet. Akad. i Stockholm, ix, Nr. 13 (1913).
page 222 note § Viz. The Svedberg, , “Ueber die Gestalt der Moleküle,” II, Arkiv f. Kemi, etc., utg. av Svenska, K. Vet. Akad. i Stockholm, v, Nr. 11 (1914)Google Scholar.
page 223 note * “Die mechanische Bodenanalyse und die Klassifikation der Mineralböden Schwedens” International Reports on Pedology, ii, 319 (1912).
page 223 note † See also Hall, A. D., Journ. of Ghem. Soc. Trans., lxxxv, 959 (1904)Google Scholar.
page 224 note * For further particulars of these investigations, and of the limits within which these simplifications can be assumed to give correct results, see my paper in International Reports on Pedology, v, 257–312 (1915).
page 230 note * International Reports on Pedology, v, 257–312 (1915).
page 231 note * Beam, W., Fourth Report of the Wellcome Tropical Research Laboratories, Khartoum, , Sudan, , 1911, p. 37.Google Scholar
page 231 note † Atterberg, A., International Reports on Pedology, ii, 314 (1912)Google Scholar.
page 233 note * Observe that log r = 0 and log r = −∞ correspond respectively to r = 1μμ and r = 0.
page 234 note * The printing having been delayed by the fire at Messrs Neill & Co.'s printing works.
- 19
- Cited by