Published online by Cambridge University Press: 15 September 2014
The theorem itself may be considered obvious, and is easily applied, as I showed at the late meeting of the British Association, to prove that in passing from any one double point of a plane closed curve continuously along the curve to the same point again, an even number of intersections must be passed through. Hence, if we suppose the curve to be constructed of cord or wire, and restrict the crossings to double points, we may arrange them throughout so that, in following the wire continuously, it goes alternately over and under each branch it meets. When this is done it is obviously as completely knotted as its scheme (defined below) will admit of, and except in a special class of cases cannot have the number of crossings reduced by any possible deformation.