Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T02:47:13.540Z Has data issue: false hasContentIssue false

XX.—Nitrogen Metabolism in Pisum sativum*

Published online by Cambridge University Press:  11 June 2012

T. G. Hyde
Affiliation:
Department of Biochemistry, Queen's College, Dundee, University of St Andrews.
Get access

Synopsis

The nitrogen metabolism of both pods and seeds of Pisum sativum has been followed at sixteen stages of growth. The distribution of free amino acids and related compounds has been investigated by paper partition chromatography.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Acher, R., Fromageot, C., and Jutisz, M., 1950. Biochim. Biophys. Acta, 5, 81.Google Scholar
Auclair, J. L., and Maltais, J. B., 1952. Nature, Lond., 170, 1114.Google Scholar
Bisson, C. S., and Jones, H. A., 1932. Plant Physiol., 7, 91.Google Scholar
Block, R. J., and Bolling, D., 1951. The Amino Acid Composition of Proteins and Foods. 2nd Ed. Thomas, Springfield, Illinois.Google Scholar
Boswell, V. R., 1929. Bull. Md. Agric. Exp. Sta., 306, 341.Google Scholar
Christiansen, G. S., and Thimann, K. V., 1950. Arch. Biochem., 28, 117.Google Scholar
Consden, R., Gordon, A. H., and Martin, A. J. P., 1947. Biochem. J., 41, 590.Google Scholar
Danielsson, C. E., 1951. Acta chem. scand., 5, 541.Google Scholar
Danielsson, C. E., 1952. Acta chem. scand., 6, 149.Google Scholar
Dent, C. E., 1948. Biochem. J., 43, 169.Google Scholar
Dent, C. E., Stepka, W., and Steward, F. C., 1947. Nature, Lond., 160, 682.Google Scholar
Emmerling, A., 1880. Landw. Vers. Sta., 24, 113.Google Scholar
Emmerling, A., 1887. Landw. Vers. Sta., 34, 1.Google Scholar
Emmerling, A., 1900. Landw. Vers. Sta., 54, 215.Google Scholar
Herbst, E. J., and Snell, E. E., 1949. J. Biol. Chem., 181, 47.CrossRefGoogle Scholar
Hiller, A., Plazin, J., and Van Slyke, D. D., 1948. J. Biol. Chem., 176, 1401.CrossRefGoogle Scholar
Hopkins, F. G., and Morgan, J., 1943. Nature, Lond., 152, 288.Google Scholar
Hulme, A. C., and Arthington, W., 1950. Nature, Lond., 165, 716.Google Scholar
Hunt, G. E., 1951. Amer.J. Bot., 38, 452.Google Scholar
Hyde, T. G., 1953. Biochem. J., 55, xxi.Google Scholar
King, F. E., King, T. J., and Warwick, A. J., 1950. J. Chem. Soc., p. 3590.Google Scholar
Lawrence, J. M., 1950. Arch. Biochem., 27, 1.Google Scholar
Markham, R., 1942. Biochem. J., 36, 790.CrossRefGoogle Scholar
Miettinen, J. K., Kari, S., Moisio, T., Alfthan, M., and Virtanen, A. I., 1953. Acta chem. fenn., B, 2, 26.Google Scholar
Moore, S., and Stein, W. H., 1948. J. Biol. Chem., 176, 367.Google Scholar
Morrison, R. I., 1952. Biochem. J., 50, xiv.Google Scholar
Partridge, S. M., 1948. Biochem. J., 42, 238.CrossRefGoogle Scholar
Pfenninger, U., 1909. Ber. dtsch. bot. Ges., 27, 227.Google Scholar
Schulze, E., 1911. Hoppe-Seyl. Z., 71, 31.CrossRefGoogle Scholar
Schulze, E., and Winterstein, E., 1910. Hoppe-Seyl. Z., 65, 431.Google Scholar
Virtanen, A. I., and Miettinen, J. K., 1953. Biochim. Biophys. Acta., 12, 181.Google Scholar
Wassilieff, N., 1908. Ber. dtsch. bot. Ges., 26, 454.Google Scholar
Wieland, T., and Bauer, L., 1951. Angew. Chem., 63, 511.Google Scholar