Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T06:56:53.245Z Has data issue: false hasContentIssue false

XV.—Quantitative Evolution. XX. Correlations in Rates of Diversification

Published online by Cambridge University Press:  11 June 2012

James Small
Affiliation:
Queen's University, Belfast.
Get access

Synopsis

A system of twelve stages of expansion from one primary monotypic genus is described and elaborated, using as two correlated parameters the rate of x 1·5 for the number of new monotypic genera arising (rGi) when the rate of X 2·0 is taken for the increase in generic size or numbers of species within any one genus (rSz). Too much stress should not be read into the precision of the positions indicated for known numerical data; an approximate fitting is all that can be reasonably expected even if these theoretical expansions are something like the historical truth.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Bentham, G., 1874. Compositæ in Genera Plantarum, London.Google Scholar
Bews, J. W., 1929. The World's Grasses, London.Google Scholar
Copeland, E. B., 1947. Genera Filicum, Waltham, Mass.Google Scholar
Dallimore, W., and Jackson, A. B., 1931. A Handbook of Coniferœ, London.Google Scholar
Ellerman, J. R., 1940. The Families and Genera of Living Rodents. II. Muridœ, Brit. Mus. (Nat. Hist.).Google Scholar
Fréchet, M., 19491950. “Les transformations asymptotiquement presque périodiques discontinues et le lemme ergodique”, Proc. Roy. Soc. Edin., A, LXIII, 6168.Google Scholar
Lambrecht, K., 1933. Handbuch der Palœornithologie, Borntræger.Google Scholar
Mills, F. W., 19331935. Index to the Genera and Species of Diatomaceœ, London.Google Scholar
Peters, J. Lee, 19311937. Check-list of the Birds of the World, Harvard U.P.Google Scholar
Sharpe, R. B., 18991909. Hand-list of the Genera and Species of Birds, I–VI, London.Google Scholar
Small, J., 1948 a. “Quantitative Evolution. IX–XIII. Details of the History of Diatoms”, Proc. Roy. Irish Acad., B, LI, Pts. 17–20, 261346.Google Scholar
Small, J., 1948 b. “Quantitative Evolution. XIV. Production Rates”, Proc. Roy. Soc. Edin., B, LXIII, 188199.Google Scholar
Small, J., 1949 a. “Quantitative Evolution. XV. Numerical Evolution”, Acta Biotheoretica, IX, 140.Google Scholar
Small, J., 1949 b. “Quantitative Evolution. XVII. The Shape and Pattern of Evolution”, Phyton, 1, Pts. 2–4, 269281.Google Scholar
Small, J., 1950 a. “Quantitative Evolution. XVI. Increase of Species-Number in Diatoms”, Ann. Bot., XIV, 91113.CrossRefGoogle Scholar
Small, J., 1950 b. “Quantitative Evolution. XVIII. Revision of Numerical Data for Diatom Durations and Number”, Proc. Roy. Irish Acad., B, LIII, Pt. 13, 241263.Google Scholar
Small, J., 19501951. “Quantitative Evolution. XIX. The Numerical Composition of Copeland's Filicales. Symposium on the Classification of Ferns”, Bot. Soc. Amer., Columbus, Ohio, 11.9.50. [In press.]Google Scholar
Snyder, T. S., 1949. “Catalog of the Termites (Isoptera) of the World”, Smithsonian Misc. Coll., CXII, 1490.Google Scholar
Stephenson, J., 1930. The Oligochœta, Oxford.Google Scholar
Williams, C. B., 1944. “Some Applications of the Logarithmic Series and the Index of Diversity to Ecological Problems”, Journ. Ecology, XXXII, 144.Google Scholar
Williams, C. B., 1947. “The Logarithmic Series and its Application to Biological Problems”, Journ. Ecology, XXXIV, 253272.Google Scholar
Willis, J. C., 1922. Age and Area, C.U.P.Google Scholar
Willis, J. C., 1940. The Course of Evolution, C.U.P.Google Scholar
Willis, J. C., 1949. The Birth and Spread of Plants, Reprint from Boissiera, VIII, Geneva.Google Scholar
Yule, J. Udny, 1924. “A Mathematical Theory of Evolution”, Phil. Trans. Roy. Soc. Lond., B, CCXIII, 2187.Google Scholar