Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T10:29:26.207Z Has data issue: false hasContentIssue false

XVI.—Algal Metabolism and Water Pollution in the Tay Region*

Published online by Cambridge University Press:  05 December 2011

W. D. P. Stewart
Affiliation:
Department of Biological Sciences, University of Dundee.
Get access

Extract

The river Tay receives water from an area covering over 2500 square miles of Scotland and has a discharge which is greater than that of the Severn and the Thames combined. It is, in addition, the least polluted of our major British rivers today. It thus provides a composite sample of the waters draining through much of east central Scotland, it provides a baseline for studies on other major British rivers, and with the impending upsurge in industrial activity along the Scottish east coast with the discovery of oil and gas in the North Sea, the importance of having a baseline against which future environmental changes can be measured is now a matter of urgency.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Ackefors, H., Löfroth, G. and Rosen, C-G., 1970. A survey of the mercury pollution problem in Sweden with special reference to fish. Oceanogr. Mar. Biol. Ann. Rev., 8, 203224.Google Scholar
Billaud, V. A., 1967. Aspects of the nitrogen nutrition of some naturally occurring populations of blue-green algae. In Environmental requirements of blue-green algae, pp. 3553. Corvallis: U.S. Dept. Interior Fed. Control Admin. North West Region.Google Scholar
Blackler, H. T., 1959. Further additions to the algal flora of St Andrews, Fife. Trans. Proc. Bot. Soc. Edinb., 37, 4660.CrossRefGoogle Scholar
Boney, A. D., 1971. Sub-lethal effects of mercury on marine algae. Mar. Pollution Bull., 2, 6971.CrossRefGoogle Scholar
Bothe, H., 1970. Photosynthetische Stickstoffixierung mit einem zellfrein Extract aus der Blaualge Anabaena cylindrica. Ber. Dt. Bot. Ges., 23, 421432.Google Scholar
Bozniak, E. G. and Kennedy, L. L., 1968. Periodicity and ecology of the plankton in an oligotrophic and eutrophic lake. Can. J. Bot., 46, 12591271.CrossRefGoogle Scholar
Brook, A. J., 1964. The phytoplankton of Scottish fresh water lochs. In The Vegetation of Scotland. Ed. Burnett, J. H., pp. 290305. Edinburgh: Oliver and Boyd.Google Scholar
Catto, G. A., 1968. Agriculture. In Dundee and District. Ed. Jones, S. J., pp. 191200. Dundee: Br. Ass. Advmt Sci.Google Scholar
Chapman, V. J., 1970. Seaweeds and their Uses, 304 pp. London: MethuenGoogle Scholar
Dilworth, M. J., 1966. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta, 127, 285294.CrossRefGoogle ScholarPubMed
Dunn, M. D., 1939. The marine algae of St Andrews Bay. Trans. Proc. Bot. Soc. Edinb., 32, 488501.CrossRefGoogle Scholar
Dunn, M. D., 1940. Seasonal changes in tidal pools. Trans. Proc. Bot. Soc. Edinb., 33, 2128.CrossRefGoogle Scholar
Fogg, G. E., 1971. Nitrogen fixation in lakes. Pl. Soil Spec. Vol. 393402.CrossRefGoogle Scholar
Fogg, G. E. and Horne, A. J., 1967. The determination of nitrogen fixation in aquatic environments. In Chemical Environment in the Aquatic Habitat. Ed. Golterman, H. L. and Clymo, R. S., pp. 115120. Amsterdam: Noord-Holland. Uitg. Maatsch.Google Scholar
Fogg, G. E. and Horne, A. J., 1970. Algal physiology. In Symposium on Antarctic Ecology. Ed. Holdgate, M. W.. pp. 632638. London: Academic Press.Google Scholar
Fritsch, F. E. 1945. Structure and Reproduction of Algae, II. Cambridge University Press.Google Scholar
Goering, J. J. and Neess, J. C., 1964. Nitrogen fixation in two Wisconsin lakes. Limnol. Oceanogr., 9, 535539.Google Scholar
Goldwater, L. J., 1971. Mercury in the environment. Scient. Am., 224, 1521.CrossRefGoogle ScholarPubMed
Haystead, A., Robinson, R. and Stewart, W. D. P., 1970. Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae. Arch. Mikrobiol., 74, 235243.CrossRefGoogle ScholarPubMed
Haystead, A. and Stewart, W. D. P., 1972. The nitrogenase system of Anabaena cylindrica. Arch. Microbiol., 82, 325336.Google ScholarPubMed
Hopkins, R. and Kain, J. M., 1971. Marine pollutants and Laminaria hyperborea. Mar. Pollution Bull., 2, 7577.CrossRefGoogle Scholar
Horne, A. J. and Fogg, G. E., 1970. Nitrogen fixation in some English lakes. Proc. Roy. Soc., B, 175, 351366.Google Scholar
Jensen, T. E., 1968. Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme. Arch. Microbiol., 62, 144152.Google Scholar
Jensen, T. E., 1969. Fine structure of developing polyphosphate bodies in a blue-green alga, Plectonema boryanum. Arch. Mikrobiol., 67, 328338.CrossRefGoogle Scholar
Kurland, L. T., Faro, S. N. and Siedler, H. S., 1960. ‘Minamata’ disease. Wld Neurol., 1, 320325.Google ScholarPubMed
Neess, J. C., Dugdale, R. C., Dugdale, V. A. and Goering, J. J., 1962. Nitrogen metabolism in lakes. I. Measurement of nitrogen fixation with 15N. Limnol. Oceanogr., 7, 163169.CrossRefGoogle Scholar
Parke, M. and Dixon, P. S., 1968. Check-list of British marine algae—second revision. J. Mar. Biol. Ass. U.K., 48, 783832.CrossRefGoogle Scholar
Schöllhorn, R. and Burris, R. H., 1966. Study of intermediates in nitrogen fixation. Fedne Proc. Fedn Am. Socs Exp. Bio., 25, 710.Google Scholar
Smith, R. C. and Evans, M. C. W., 1970. Soluble nitrogenase from vegetative cells of the blue-green alga Anabaena cylindrica. Nature, Lond., 225, 12531254.CrossRefGoogle ScholarPubMed
Stewart, W. D. P., 1965. Nitrogen turnover in marine and brackish habitats. I. Nitrogen fixation. Ann. Bot., 29, 229239.CrossRefGoogle Scholar
Stewart, W. D. P., 1967. Nitrogen turnover in marine and brackish habitats. II. Use of 15N in measuring nitrogen fixation in the field. Ann. Bot., 31, 385407.CrossRefGoogle Scholar
Stewart, W. D. P., 1969. Biological and ecological aspects of nitrogen fixation by free-living micro-organisms. Proc. Roy. Soc, B, 172, 367388.Google ScholarPubMed
Stewart, W. D. P., 1970. Algal fixation of atmospheric nitrogen, Pl. Soil, 32, 555588.CrossRefGoogle Scholar
Stewart, W. D. P., 1971. Nitrogen fixation in the sea. In Fertility of the Sea. Ed. Costlow, J. D., pp. 537564. London: Gordon & Breach.Google Scholar
Stewart, W. D. P. and Alexander, G., 1971. Phosphorus availability and nitrogenase activity in aquatic blue-green algae. Freshwat. Biol., 1, 389404.CrossRefGoogle Scholar
Stewart, W. D. P., Fitzgerald, G. P. and Burris, R. H., 1967. In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natn. Acad. Sci. U.S.A., 58, 20712078.CrossRefGoogle ScholarPubMed
Stewart, W. D. P., Fitzgerald, G. P. and Burris, R. H., 1968. Acetylene reduction by blue-green algae. Arch. Mikrobiol., 62, 336348.CrossRefGoogle ScholarPubMed
Stewart, W. D. P., Fitzgerald, G. P. and Burris, R. H., 1970. Acetylene reduction assay for determination of phosphorus availability in Wisconsin Lakes. Proc. Natn. Acad. Sci. U.S.A., 66, 11041111.CrossRefGoogle ScholarPubMed
Stewart, W. D. P., Mague, T., Fitzgerald, G. P. and Burris, R. H., 1971. Nitrogenase activity in Wisconsin lakes of differing degrees of eutrophication. New Phytol., 70, 497509.CrossRefGoogle Scholar
Stewart, W. D. P. and Pearson, H. W., 1970. Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae. Proc. Roy. Soc, B, 175, 293311.Google Scholar
Talpasayi, E. R. S., 1963. Polyphosphate containing particles of blue-green algae. Cytologia, 28, 7680.CrossRefGoogle Scholar
Thorpe, V. A., 1971. Determination of mercury in food products and biological fluids by aeration and flameless atomic absorption spectrophotometry. J. Ass. Off. Analyt. Chem., 54, 206210.Google ScholarPubMed