Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T02:35:58.210Z Has data issue: false hasContentIssue false

Variation in, and reproductive capacity of, Betula pendula and B. pubescens

Published online by Cambridge University Press:  05 December 2011

J. Pelham
Affiliation:
Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian EH26 0QB
J. W. Kinnaird
Affiliation:
Institute of Terrestrial Ecology, Hill of Brathens, Glassel, Banchory, Kincardineshire AB3 4BY
A. S. Gardiner
Affiliation:
Institute of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria LA11 6JU
F. T. Last
Affiliation:
Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian EH26 0QB
Get access

Synopsis

While B. pendula can be distingushed from B. pubescens by its diploid number of chromosomes, 28 compared with 56, separation by morphology depends upon a blend of variable characteristics, including leaf hairiness, occurrence of warts on branches, roughness of bark, pendulous habit and, most consistently, leaf shape.

Individuals of B. pendula, like those of B. pubescens, are mostly self-incompatible. The dates of flowering of individuals within a population of trees may differ markedly. However, female flowers usually mature sooner than male flowers on the same tree. The pollen of Betula spp. can be wind-dispersed considerable distances. Seed production varies greatly from year to year. Within a seedlot, the onset of germination may differ by as much as 7 days.

When side by side at latitude 56°N, trees from seed collected at southerly sites (lat. 50°N) in the natural ranges of B. pendula and B. pubescens grew taller than those from northerly (lat. 69°N) locations. However, when compared at latitude 69°N, the more northerly collections were the more vigorous. The seasonal onset of growth of different B. pubescens seedlings depended upon their origins. Seedlings from latitude 56°N commenced growth when days were 14h long; those from 63° and 70°N started when days were 16 and 20 h long respectively. Whereas northerly collections ceased growth when daytime temperatures dropped below 9°C, southerly collections continued to grow. The stem extension of B. pubescens seedlings grown from seeds collected at different altitudes (in the range of 200–1000m) was inversely related to the altitude of collection when compared at the same low altitude.

Within a population, some B. pubescens seedlings grew significantly more than others when supplied with small amounts of nutrients, the differences disappearing when amounts of nutrients were increased. In Britain, B. pendula was usually more severely attacked by the rust fungus, Melampsoridium betulinum, than B. pubescens whereas in southern Sweden, B. pubescens has been reported as the more severely attacked. At both locations, there were conspicuous within-species differences. More fruitbodies of sheathing mycorrhizal fungi were produced in association with southerly, than with northerly, collections of both B. pubescens and B. pendula—384 compared with nil fruitbodies per tree, 4 years after planting.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Björkeman, E. 1966. Status and trends in research related to the resistance of forest trees to diseases in Northern Europe. In Breeding pest-resistant trees, ed. Gerhold, H. D., Schreiner, E. J., McDermott, R. E. M. and Winieski, J. A., pp. 310. Oxford: Pergamon.CrossRefGoogle Scholar
Black, M. and Wareing, P. F. 1954. Photoperiodic control of germination in seed of birch (Betula pubescens Ehrh.). Nature, Lond. 174, 705706.CrossRefGoogle Scholar
Brown, I. R. and Al-Dawoody, D. M. 1977. Cytotype diversity in a population of Betula alba L. New Phytol. 79, 441453.CrossRefGoogle Scholar
Brown, M. T. 1983. Zinc tolerance in Betula spp. and mycorrhizal fungi. Ph.D. Thesis, Birmingham University.Google Scholar
Bunce, R. G. H. and Last, F. T. 1981. How to characterize the habitats of Scotland. A. Rep. Edinb. Centre Rural Econ. 1980/81, 1–14.Google Scholar
Buzov, B. 1975. (Studies on the intraspecific ecotypic variation of Betula verrucosa in the Rila river basin.) Gorskostopanska Nauka 12, 4348.Google Scholar
Cavers, P. B. and Harper, J. L. 1967. Studies in the dynamics of plant populations. 1. The fate of seed and transplants introduced into various habitats. J. Ecol. 55, 5971.CrossRefGoogle Scholar
Clapham, A. R., Tutin, T. G. and Warburg, E. F. 1962. Flora of the British Isles. Cambridge: Cambridge University Press.Google Scholar
Cooper, J. I. 1976. The possible epidemiological significance of pollen and seed transmission in the cherry leaf roll virus/Betula spp. complex. Mitt. Biol. BundAnst. Ld- u. Forstw. 170, 1722.Google Scholar
Cooper, J. I. and Atkinson, M. A. 1975. Cherry leaf roll virus causing a disease of Betula spp. in the United Kingdom. Forestry 48, 193203.CrossRefGoogle Scholar
Cooper, J. I. and Massalski, P. R. 1984. Viruses and virus-like diseases affecting Betula spp. Proc. Roy. Soc. Edinb. 85B, 183195.Google Scholar
Danchenko, A. M. and Budaragin, V. A. 1976. The nature of black-barked specimens of Betula verrucosa. Lesovedenie 4, 8891.Google Scholar
Denisov, A. K., Denisov, S. A. and Kudrayavstev, A. K. 1973. Anemochory of Betula pubescens and B. verrucosa. Lesnoi Zh. 16, 69.Google Scholar
Eifler, I. 1960. Untersuchungen zur individuellen Bedingtheit des Kreuzungserfolges zwischen Betula pendula und Betula pubescens. Silvae Genet. 9, 150165.Google Scholar
Eifler, I. 1964. Untersuchungen zur Bestaübungsvorgang und der Samenentwicklung bei Birkenartkreuzungen. Züchter 34, 305312.CrossRefGoogle Scholar
Ford, R. H., Sharik, T. L. and Feret, P. P. 1983. Seed dispersal of the endangered Virginia round-leaf birch (Betula uber). For. Ecol. Mgmt 6, 115128.CrossRefGoogle Scholar
Gardiner, A. S. 1958. Variation in bark characteristics in birch. Scott. For. 12, 191195.Google Scholar
Gardiner, A. S. 1978. Clonal differences in the leaf-shape of Betula pubescens Ehrh. A. Rep. Inst. Terr. Ecol. 1977, 2528.Google Scholar
Gardiner, A. S. and Jeffers, J. N. R. 1962. Analysis of the collective species Betula alba L. on the basis of leaf measurements. Silvae Genet. 11, 156161.Google Scholar
Gardiner, A. S. and Pearce, N. J. 1979. Leaf-shape as an indicator of introgression between Betula pendula and B. pubescens. Trans. Bol. Soc. Edinb. 43, 91103.CrossRefGoogle Scholar
Grime, J. P. and Jeffrey, D. W. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53, 621642.CrossRefGoogle Scholar
Håbjørg, A. 1972a. Effects of photoperiod and temperature on growth and development of three latitudinal and three altidunal populations of Betula pubescens Ehrh. Meld. Norg. LandbrHøgsk. 51.2, 1–27.Google Scholar
Håbjørg, A. 1972b. Effects of light quality, light intensity and night temperature on growth and development of three latitudinal populations of Betula pubescens Ehrh. Meld. Norg. LandbrHøgsk. 51.26, 1–17.Google Scholar
Hagman, M. 1963. Incompatibility in Betula verrucosa Ehrh. and B. pubescens Ehrh. In Genetics Today, ed. Geerts, S. J., Vol. 1, p. 211. Oxford: Pergamon.Google Scholar
Hagman, M. 1971. On self- and cross-incompatibility shown by Betula verrucosa Ehrh. and Betula pubescens Ehrh. Commun. Inst. For. Fenn. 73.6, 1–125.Google Scholar
Helliwell, D. R. and Harrison, A. F. 1978. Variation in the growth of different seedlots of Acer pseudoplatanus and Betula verrucosa grown on different soils. Forestry 51, 3745.CrossRefGoogle Scholar
Hutchinson, T. C. 1967. Comparative studies of species to withstand prolonged periods of darkness. J. Ecol. 55, 291299.CrossRefGoogle Scholar
Jentys-Szaferowa, J. 1949. Analysis of the collective species Betula alba L. on the basis of leaf measurements. Part I: Aim and method of the work on the example of Betula verrucosa Ehrh. Bull. Acad. Pol. Sci. Math. Nat. B.1, 175–214.Google Scholar
Johnsson, H. 1949. Hereditary precocious flowering in Betula verrucosa and B. pubescens. Hereditas 35, 112114.Google Scholar
Johnsson, H. 1951. Avkommeprövning av björk—preliminära resultat från unga försoksplanteringar. Medd. För. Växtförädl. Skogsträd 55.11, 12, 1–30.Google Scholar
Kinnaird, J. W. 1968. Ecology of birch woods. Proc. Bot. Soc. Br. Isl. 7, 181182.Google Scholar
Kinnaird, J. W. 1974. Effect of site conditions on the regeneration of birch (Betula pendula Roth and B. pubescens Ehrh.). J. Ecol. 62, 4674172.CrossRefGoogle Scholar
Kryvma, D. Ya. 1977. (Selection for general combining ability for yield characters in populations of Betula verrucosa in Latvia.) Lesovedenie 2, 2934.Google Scholar
Lange, V. 1975. (Relation between tree increment and stem bark type in birch (Betula pendula).) Latv. Lauksaimn. Akad. Rak. 93, 3239.Google Scholar
Last, F. T. 1975. Some aspects of the genecology of trees. Rep. E. Malling Res. Stn 1974, 25–40.Google Scholar
Last, F. T., Mason, P. A., Pelham, J. and Ingleby, K. 1984. Fruitbody production by sheathing mycorrhizal fungi: effects of ‘host’ genotypes and propagating soils. For. Ecol. Mgmt (in press).CrossRefGoogle Scholar
Loman, M. 1978. Spring phenology and productivity of Betula pendula and Betula pubescens in Scotland. M.Sc. Thesis, University of Aberdeen.Google Scholar
Mason, P. A., Last, F. T., Pelham, J. and Ingleby, K. 1982. Ecology of some fungi associated with an ageing stand of birches (Betula pendula and B. pubescens). For. Ecol. Mgmt 4, 1939.CrossRefGoogle Scholar
Matthews, J. D. 1955. Production of seed by forest trees in Britain, Rep. Forest. Res., Lond. 1953/54, 64–78.Google Scholar
Miles, J. 1973. Early mortality and survival of self sown seedlings in Glen Feshie, Inverness-shire. J. Ecol. 61, 9398.CrossRefGoogle Scholar
Miles, J. and Kinnaird, J. W, 1979. The establishment and regeneration of birch, juniper and Scots pine in the Scottish Highlands. Scott. For. 33, 102119.Google Scholar
Newton, I. 1972. Finches. London: Collins.Google Scholar
Nokes, D. C. B. 1979. Biosystematic studies of Betula pendula Roth and B. pubescens Ehrh. in Great Britain. Ph.D. Thesis, Wolverhampton Polytechnic.Google Scholar
Peace, T. R. 1962. Pathology of trees and shrubs. Oxford: Oxford University Press.Google Scholar
Pelham, J. and Mason, P. A. 1981. Nutritional variants of birch. In Forest and woodland ecology: an account of research being done in I.T.E., ed. Last, F. T. and Gardiner, A. S., pp. 7881. Cambridge: Institute of Terrestrial Ecology.Google Scholar
Perring, F. H. and Walters, S. M. (Eds) 1976. Atlas of the British Flora. Wakefield: E P Publishing.Google Scholar
Raulo, J. 1976. Development of Betula pendula Roth progenies in Northern Lapland. Metsäntutkimuslait. Julk. 88, 119.Google Scholar
Rempe, H. 1937. Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftstromungen. Planta 27, 93147.CrossRefGoogle Scholar
Ross, M. A. and Harper, J. L. 1972. Occupation of biological space during seedling establishment. J. Ecol. 60, 7788.CrossRefGoogle Scholar
Sarvas, R. 1948. A research on the regeneration of birch in south Finland. Commun. Inst. For. Fenn. 35.4, 1–91.Google Scholar
Sarvas, R. 1952. On the flowering of birch and the quality of seed crop. Commun. Inst. For. Fenn. 40.7, 1–35.Google Scholar
Sarvas, R. 1955. Investigations into the flowering and seed quality of forest trees. Commun. Inst. For. Fenn. 45.7, 1–37.Google Scholar
Sarvas, R. 1956. Investigations into the dispersal of birch pollen with a particular view to the isolation of seed source plantations. Commun. Inst. For. Fenn. 46.4, 1–19.Google Scholar
Sarvas, R. 1967. The annual period of development of forest trees. Sber. Finn. Akad. Wiss. Lett. 1965 211–231.Google Scholar
Sarvas, R. 1972. Investigations on the annual cycle of development of forest trees. Active Period. Commun. Inst. For. Fenn. 76.3, 1–110.Google Scholar
Stern, K. 1963a. Über einige Kreuzungsversuche zur Frage des Vorkommens von Arthybriden Betula verrucosa x B. pubescens. Dt. Baumsch. 15, 110.Google Scholar
Stern, K. 1963b. Versuche über die Selbststerilität beider Sandbirke. Silvae Genet. 12, 8082.Google Scholar
Tolstopyatenko, A. I. 1974. (Bisexual inflorescences in Betula species). Bot. Zh. 12, 18341844.Google Scholar
Tyldesley, J. B. 1973a. Long-range transmission of tree pollen to Shetland. I. Sampling and trajectories. New Phytol. 72, 175181.CrossRefGoogle Scholar
Tyldesley, J. B. 1973b. Long-range transmission of tree pollen to Shetland. II. Calculation of pollen deposition. New Phytol. 72, 183190.CrossRefGoogle Scholar
Vaartaja, O. 1949. High surface soil temperatures. Oikos 1, 628.CrossRefGoogle Scholar
Vaartaja, O. 1952. Forest humus quality and light conditions as factors influencing damping-off. Phytopathology 42, 501506.Google Scholar
Vaartaja, O. 1962. The relationship of fungi to survival of shaded tree seedlings. Ecology 43, 547549.CrossRefGoogle Scholar
Wright, J. W. 1953. Pollen dispersion studies: some practical applications. J. For. 51, 114118.Google Scholar