Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-17T17:53:09.517Z Has data issue: false hasContentIssue false

Towards an appreciation of fern edaphic niche requirements

Published online by Cambridge University Press:  05 December 2011

Raymond L. Petersen
Affiliation:
Howard University, Washington, D.C. 20059, U.S.A.
Get access

Synopsis

This assessment of selected literature on pteridophyte edaphic adaptation is presented in three parts: (1) pH and general soil nutrient background, (2) growth responses to specific inorganic ions and frond mineral content, and (3) collected works on Pteridium aquilinum edaphic adaptations. In this report, a case is made for the overriding effect of both soil pH and inorganic ion content in determining pteridophyte occurrence. Recommendations are made for more field and laboratory co-ordinated studies, especially as they pertain to the determination of species-specific amplitudes of adaptation, and for the initiation of physiological and metabolic investigations into the basis of these edaphic adaptations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, R. A., Robinson, G. W. and Russell, E. J. 1918. Bracken as a source of potash. J. Bd Agric. 25, 111.Google Scholar
Carlson, T. J. 1979. The comparative ecology and frequencies of interspecific hybridization of Michigan woodferns. Michigan Botan. 18, 4756.Google Scholar
Chen, C. H. and Lewin, J. C. 1969. Silicon as a nutrient for Equisetum arvense. Can. J. Bot. 47, 125131.CrossRefGoogle Scholar
Clarkson, D. T. and Hanson, J. B. 1980. The mineral nutrition of higher plants. An. Rev. Pl. Physiol. 31, 239298.CrossRefGoogle Scholar
Conway, E. and Stephens, R. 1957. Sporeling establishment in Pteridium aquilinum: effects of mineral nutrients. J. Ecol. 45, 389399.CrossRefGoogle Scholar
Cooper, O. 1983. The effect of mercuric chloride, selenous acid and sodium sulfate toxicity on fern and moss spore germination. M.S. Thesis, Department of Botany, Howard University, Washington, D.C., U.S.A.Google Scholar
Cousens, M. I. 1981. Blechnum spicant: habitat and vigor of optimal, marginal, and disjunct populations, and field observations of gametophytes. Bot. Gaz. 142, 251258.CrossRefGoogle Scholar
Czaja, A. T. 1921. Ueber Befruchtung, Bastardierung und Geschlechtertrennung bei Prothallien homosporer Fanne. Z. Bot. 13, 545589.Google Scholar
Denaeyer-de Smet, S. 1966. Note sur un acumulateur de manganese: Vaccinium myrtillus L. Bull. Soc. Roy. Bot. Belg. 99, 331343.Google Scholar
De Silva, B. L. T. 1934. The distribution of calcicole and calcifuge species in relation to the content of the soil in calcium carbonate and exchangeable calcium and to soil reaction. J. Ecol. 22, 532553.Google Scholar
Dubuy, H. G. and Neurnberg, E. L. 1938. Growth, tropisms, and other movements. In Manual of Pteridology, ed. Verdoorn, F., pp. 303346. The Hague: Nijhoff.CrossRefGoogle Scholar
Farrar, D. R. and Gooch, R. D. 1975. Fern reproduction at Woodman Hollow, central Iowa: preliminary observations and a consideration of the feasibility of studying fern reproductive biology in nature. Proc. Iowa Acad. Sci. 82, 119122.Google Scholar
Francis, P. C. 1981. The effects of heavy metal ion combinations on fern and moss spore germination and moss protonemal growth. M. S. Thesis, Department of Botany, Howard University, Washington D. C., U.S.A.Google Scholar
Francis, P. C. and Petersen, R. L. 1983a. Effect of copper, cadmium, and zinc on percent spore germination of the cinnamon fern (Osmunda cinnamomea) and the sensitive fern (Onoclea sensibilis). Bull. Environ. Contam. Toxicol. 30, 559566.CrossRefGoogle ScholarPubMed
Francis, P. C. and Petersen, R. L. 1983b. Synergistic and antagonistic responses of fern spore germination to combinations of copper, cadmium, and zinc. Bull. Environ. Contam. Toxicol. 30, 567574.CrossRefGoogle ScholarPubMed
Gillian, C. H., Eakes, D. J., Shumack, R. L. and Evans, C. E. 1982. Liming materials and rates for Boston ferns in a soilless medium: I. Effect of pH. Commun. Soil Sci. Plant Anal. 13, 259266.CrossRefGoogle Scholar
Graves, J. H. and Monk, C. D. 1982. Herb-soil relationships on a lower north slope over marble. Bull. Torrey Bot. Club. 109, 500507.CrossRefGoogle Scholar
Hill, R. H. 1971. Comparative habitat requirements for spore germination and prothallial growth of three ferns in southeastern Michigan. Am. Fern J. 61, 171182.Google Scholar
Hipp, B. W. and Morgan, D. 1980. Influence of medium pH on growth of ‘Roosevelt’ ferns. Hortscience 15, 196.CrossRefGoogle Scholar
Hoffman, F. M. and Hillson, C. 1979. Effects of silicon on the life cycle of Equisetum hyemale L. Bot. Gaz. 140, 127132.Google Scholar
Höhne, H. 1962. Vergleichende Untersuchungen über den Mineralstoff- und Stickstoffgehalt sowie die Trockensubstanzproduction von Waldbodenpflanzen. Arch. Forstives. 11, 10851141.Google Scholar
Höhne, H. 1963. Untersuchungen über die Pufferkraft und das C/N-Verhältnis der Streu von Waldbodenflanzen, Sträuchern und Bäumen. Arch. Forstives. 12, 842863.Google Scholar
Höhne, H. and Richter, B. 1981. Untersuchungen über den Mineralstoff- und Stickstoffgehalt von Farnkräutern. Flora 171, 110.CrossRefGoogle Scholar
Hunter, J. G. 1953. The composition of bracken; some major- and trace-element constituents. J. Sci. Fd Agric. 4, 1020.Google Scholar
Klekowski, E. J. 1979. The genetics and reproductive biology of ferns. In The Experimental Biology of Ferns, ed. Dyer, A. F., pp. 133169. London: Academic Press.Google Scholar
Näf, V., Nakanishi, K. and Endo, M. 1975. On the physiology and chemistry of fern antheridiogens. Bot. Rev. 41, 315359.CrossRefGoogle Scholar
Page, C. N. 1976. The taxonomy and phytogeography of bracken—a review. Bot. J. Linn. Soc. 73, 134.Google Scholar
Parrish, J. A. D. and Bazzaz, F. A. 1982. Niche responses of early and late successional tree seedlings on three resource gradients. Bull. Torrey Bot. Club. 109, 451456.CrossRefGoogle Scholar
Petersen, R. L., Arnold, D., Lynch, D. G. and Price, S. A. 1980. A heavy metal bioassay based on percent spore germination of the sensitive fern, Onoclea sensibilis. Bull. Environ. Contam. Toxicol. 24, 489495.CrossRefGoogle Scholar
Petersen, R. L. and Francis, P. C. 1980. Differential germination of fern and moss spores in response to mercuric chloride. Am. Fern J. 70, 115118.CrossRefGoogle Scholar
Prange, R. K. 1982. Effects of ammonium and nitrate on the ostrich fern (Matteuccia struthiopteris). Can. J. Pl. Sci. 62, 195201.Google Scholar
Sadebeck, M. 1887. Ueber die generationsweise fortgesetzten Aussaaten und Culturen die Serpentinformen der Farngattung Asplenium. Ber. Sitz. Ges. Bot. Hamburg III, 7479.Google Scholar
Schwabe, W. W. 1951. Physiological studies in plant nutrition. XVI. The mineral nutrition of bracken. Ann. Bot. 15, 418446.Google Scholar
Singh, V. P. and Roy, S. K. 1977. Mating systems and distribution in some tropical ferns. Ann. Bot. 41, 10551060.Google Scholar
Wagner, W. H. Jr., 1982. Edgar, T. Wherry 1885–1982. Bull. Torrey. Bot. Club 109, 545548.Google Scholar
Waring, R. H. and Major, J. 1964. The vegetation of the California coastal redwood region in relation to gradients of moisture, nutrients, light, and temperature. Ecol. Monogr. 32, 167215.Google Scholar
Watt, A. S. 1976. The ecological status of bracken. Bot. J. Linn. Soc. 73, 217239.CrossRefGoogle Scholar
Weinberg, E. S. and Voeller, B. R. 1969. External factors inducing germination of fern spores. Am. Fern J. 59, 153167.CrossRefGoogle Scholar
Wherry, E. T. 1920. The soil reactions of certain rock ferns–I, II. Am. Fern J. 10, 15–22 and 4552.CrossRefGoogle Scholar