Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:22:31.298Z Has data issue: false hasContentIssue false

Structural basis for functional diversity of animal toxins

Published online by Cambridge University Press:  05 December 2011

André Ménez
Affiliation:
Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, 91190, Gif-sur-Yvette, France
François Bontems
Affiliation:
Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, 91190, Gif-sur-Yvette, France
Christian Roumestand
Affiliation:
Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, 91190, Gif-sur-Yvette, France
Bernard Gilquin
Affiliation:
Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, 91190, Gif-sur-Yvette, France
Flavio Toma
Affiliation:
Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, 91190, Gif-sur-Yvette, France
Get access

Synopsis:

The diversity of biological functions that are exerted by toxins from snake and scorpion venoms is associated with a limited number of structural frameworks. At present, one predominant basic fold has been observed among scorpion toxins whereas six folds have been found among snake toxins. Most toxin folds have the capacity to accept multiple insertions, deletions and mutations and to exert various recognition functions. We suggest that such folds may serve as guides to engineer new protein functions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adem, A., Asblom, A., Johansson, G., Mbugua, P. M. & Karlsson, E. 1988. Toxins from the venom of the green mamba Dendroaspis angusticeps that inhibit the binding of quinuclidinyl benzilate to muscarinic acetylcholine receptors. Biochimica Biophysica Acta 968, 340–5.CrossRefGoogle ScholarPubMed
Aird, S. D., Kaiser, I. I., Lewis, R. V. & Kruggel, W. G. 1986. A complete amino acid seqneuce for the basic subunit of crotoxin. Archive of Biochemistry and Biophysics 249, 296300.CrossRefGoogle ScholarPubMed
Aird, S. D., Yates, J. R., Hunt, D. F. & Kaiser, I. I. 1989. Amino acid sequence of crotoxin's acidic subunit B chain. Toxicon 27, 29.Google Scholar
Aird, S. D., Yates, J. R., Martino, P. A., Shabanowitz, J., Hunt, D. F. & Kaiser, I. I. 1990. The amino acid sequence of the acidic subunit B chain of crotoxin. Biochimica Biophysica Acta 1040, 217–24.CrossRefGoogle ScholarPubMed
Almassy, R. J., Fontecilla-Camps, J. C., Suddath, F. L. & Bugg, C. E. 1983. Structure of variant-3 scorpion neurotoxin from Centruroides sculpturatus. Ewing, refined at 1.8 Å resolution. Journal of Molecular Biology 170, 497527.CrossRefGoogle ScholarPubMed
Arseniev, A. S., Kondakov, V. I., Maiorov, V. N. & Bystrov, V. F. 1984. NMR solution spatial structure of ‘short’ scorpion insectotoxin I5A. FEBS Letters 165, 5762.CrossRefGoogle Scholar
Aumelas, A., Chiche, L., Mahe, E. & Le-Nguyen, D. 1991. 1H NMR study of the solution structure of sarafotoxin-S6b. Neurochemistry International 18, 471–5.CrossRefGoogle ScholarPubMed
Basus, V. J., Billeter, M., Love, R. A., Stroud, R. M. & Kuntz, I. D. 1988. Structural studies of α-bungarotoxin. 1. Sequence-specific 1H NMR resonance. Biochemistry 27, 2763–71.CrossRefGoogle ScholarPubMed
Bdolah, A., Wollberg, Z. & Kochva, E. 1991. Sarafotoxins: A new group of cardiotoxic peptides from the venom of Atractaspis. In Snake toxins, pp. 415–24, ed. Harvey, A. L. New York: Pergamon.Google Scholar
Bernard, C. 1857. Leçon sur les effets des substances toxiques et médicamenteuse, pp. 238306. Paris: Baillière.Google Scholar
Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljanski, Y., Ménez, A. & Toma, F. 1991a. Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins. European Journal of Biochemistry 196, 1928.CrossRefGoogle ScholarPubMed
Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljanski, Y., Ménez, A., Roumestand, C., Gilquin, B., Ménez, A. & Toma, F. 1991b. The refined structure of charybdotoxin reveals the presence of a common structural motif in scorpion toxins and insect defensins. Science 254, 1521–3.CrossRefGoogle Scholar
Boquet, P. 1970. Action de la toxine γ du venin de Naja nigricollis sur les cellules KB cultivees in vitro. Compte Rendus de l' Académie des Sciences, Paris 271, 2422–25.Google Scholar
Bouchier, C., Boulain, J.-C., Bon, C. & Ménez, A. 1991. Analysis of cDNAs encoding the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattlesnake venom: the acidic non enzymatic subunit derives from phospholipase A2-like precursor. Biochimica Biophysica Acta 1088, 401–8.CrossRefGoogle ScholarPubMed
Bouchier, C., Boulain, J.-C., Bon, C., Ducancel, F., Guignery-Frelat, G., Bon, C., Boulain, J.-C. & Menez, A. 1988. Cloning and sequencing of cDNAs encoding the two subunits of crotoxin. Nucleic Acids Research 16, 9050.CrossRefGoogle ScholarPubMed
Bourne, P. E., Sato, A., Corfield, P. W. R., Rosen, L. S., Birken, S. & Low, B. W. 1985. Erabutoxin b. Initial protein refinement and sequence analysis at 0.140-nm resolution. European Journal of Biochemistry 153, 521–7.CrossRefGoogle ScholarPubMed
Brown, S. C., Donlan, M. E. & Jeffs, P. W. 1990. Structural studies of endothelin by CD and NMR. In Peptides, chemistry, structure and biology, Proc. 11th AM. Pep. Symp, pp. 595–7, eds Rivier, J. E. & Marshall, G. R. Leiden, The Netherlands.Google Scholar
Brunie, S., Bolin, J., Gewirth, D. & Sigler, P. B. 1985. The refined crystal structure of dimeric phospholipase A2 at 2.5 Å. Access to a shielded catalytic center. Journal of Biological Chemistry 260, 9742–9.CrossRefGoogle ScholarPubMed
Carbone, E., Prestipino, G., Spadavecchia, L., Franciolini, F. & Possani, L. D. 1987. Blocking of the squid axon K+ channel by nioxiustoxin, a toxin from the venom of the scorpion Centruroides noxis. Pfluegers Archives (European Journal of Physiology) 408, 423–31.CrossRefGoogle Scholar
Catterall, W. A. 1984. The molecular basis of neuronal excitability. Science 223, 653–61.CrossRefGoogle ScholarPubMed
Changeux, J.-P. 1990. Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. In Fidia Research Foundation Neuroscience Award Lectures. Vol. 4. New York: Raven Press.Google Scholar
Chiappinelli, V. A. 1984. Kappa-bungarotoxin: a probe for the neuronal nicotinic acetylcholine receptor. Trends in Pharmacological Sciences 5, 425–8.CrossRefGoogle Scholar
Chiappinelli, V. A. 1991. K-neurotoxins and α-neurotoxins: effects on nicotinic acetylcholine receptors. In Snake toxins, pp. 223–58, ed. Harvey, A. L. New York: Pergamon.Google Scholar
Chicchi, G. G., Gimenez-Gallego, G., Ber, E., Garcia, M. L., Winquist, R. & Cascieri, M. A. 1988. Purification and characterization of a unique, potent inhibitor of apamin binding from Lieurus quinquestriatus hebraeus venom. Journal of Biological Chemistry 263, 10192–7.CrossRefGoogle ScholarPubMed
Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., Sheriff, S., Padlan, E. A., Davies, D., Tulip, W. R., Colman, P. M., Spinelli, S., Alzari, P. M. & Poljak, R. J. 1989. Conformations of immunoglobulin hypervariable regions. Nature 342, 877–83.CrossRefGoogle ScholarPubMed
Chwetzoff, S. 1990. On the mode of action of basic phospholipase A2 from Naja nigricollis venom. Biochimica Biophysica Acta 1045, 285–90.CrossRefGoogle ScholarPubMed
Chwetzoff, S., Couderc, J., Frachon, P. & Menez, A. 1989a. Evidence that the anti-coagulant and lethal properties of basic phospholipase A2 from snake venom are unrelated. FEBS Letters 248, 14.CrossRefGoogle ScholarPubMed
Chwetzoff, S., Tsunasawa, S., Sakiyama, F. & Menez, A. 1989b. Nigexine, a phospholipase A2 from cobra venom with cytotoxic properties not related to esterase activity. Journal of Biological Chemistry 264, 13 289–13 297.CrossRefGoogle Scholar
Corfield, P. W. R., Lee, T.-J. & Low, B. W. 1989. The crystal structure of erabutoxin a at 2.0-Å resolution. Journal of Biological Chemistry 264, 9239–42.CrossRefGoogle ScholarPubMed
Couraud, F., Jover, E., Dubois, J. M. & Rochat, H. 1982. Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20, 916.CrossRefGoogle Scholar
Darbon, H., Weber, C. & Braun, W. 1991. Two-dimensional 1H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis hector. Sequential resonance assignments and folding of the polypeptide chain. Biochemistry 30, 1836–45.CrossRefGoogle ScholarPubMed
Darbon, H., Zlotkin, E., Kopeyan, C., Van Rietschoten, J. & Rochat, H. 1982. Covalent structure of the insect toxin of the North African scorpion Androctonus australis hector. International Journal of Peptide and Protein Research 20, 320–30.CrossRefGoogle ScholarPubMed
Dennis, M. S., Henzel, W. J., Pitti, R. M., Lipari, M. T., Napier, M. A., Deisher, T. A., Bunting, S. & Lazarus, R. A. (1989). Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: Evidence for a family of platelet-aggregation inhibitors. Proceedings of the National Academy of Sciences, USA 87, 2471–5.CrossRefGoogle Scholar
De Weille, J. R., Schweitz, H., Maes, P., Tartar, A. & Lazdunski, M. 1991. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proceedings of the National Academy of Sciences, USA 88, 2437–40.CrossRefGoogle ScholarPubMed
Dijkstra, B. W., Kalk, K. H., Hol, W. G. J. & Drenth, J. 1981. Structure of bovine pancreatic phospholipase A2 at 1.7 Å resolution. Journal of Molecular Biology 147, 97123.CrossRefGoogle Scholar
Drenth, J., Low, B. W., Richardson, J. S. & Wright, C. S. 1980. The toxin-agglutinin fold. A new group of small protein structures organized around a four-disulfide core. Journal of Biological Chemistry 255, 2652–5.CrossRefGoogle ScholarPubMed
Dreyer, F. 1990. Peptide toxins and potassium channels. Reviews of Physiology, Biochemistry and Pharmacology 115, 93136.Google ScholarPubMed
Ducancel, F., Guignery-Frelat, G., Tamiya, T., Boulain, J.-C. & Ménez, A. 1989. Postsynaptically-acting toxins and proteins with phospholipase structure from snake venoms: Complete amino acid sequences deduced from cDNAs and production of a toxin with staphylococcal protein A gene fusion vector. In Natural toxins, characterization, pharmacology and therapeutics, pp. 7993. Proc. of the 9th world congress on Animal, Plant and Microbial Toxins, Stillwater, Oklahoma, August 1988, eds Ownby, C. L. & Odell, G. V. Oxford: Pergamon Press.Google Scholar
Ducancel, F., Guignery-Frelat, G., Tamiya, T., Boulain, J.-C., Ménez, A. Rowan, E. G., Cassar, E., Harvey, A. L., Ménez, A. & Boulain, J.-C. 1991. Amino acid sequence of a muscarinic toxin deduced from the cDNA nucleotide sequence. Toxicon 29, 516–20.CrossRefGoogle ScholarPubMed
Dufton, M. J. & Hider, R. C. 1983. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. C.R.C. Critical Reviews in Biochemistry 14, 113–71.CrossRefGoogle Scholar
Dufton, M. J., Eaker, D. & Hider, R. C. (1983). Conformational properties of phospholipases A2. Secondary-structure prediction, circular dichroism and relative interface hydrophobicity. European Journal of Biochemistry 137, 537–44.CrossRefGoogle ScholarPubMed
Ehrenreich, H., Anderson, R. W., Fox, C. H., Rieckmann, P., Hoffman, G. S., Travis, W. D., Coligan, J. E., Kehrl, J. H. & Fauci, A. S. 1990. Endothelins, peptides with potent vasoactive properties, are produced by human macrophages. Journal of Experimental Medicine 172, 1741–8.CrossRefGoogle ScholarPubMed
Eitan, M., Fowler, E., Herrmann, R., Duval, A., Pelhate, M. & Zlotkin, E. 1990. A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry 29, 5941–7.CrossRefGoogle ScholarPubMed
Endo, T. & Tamiya, N. 1991. Structure-function relationships of postsynaptic neurotoxins from snake venoms. In Snake toxins, pp. 165222, Harvey, A. L.. New York: Pergamon.Google Scholar
Endo, T., Oya, M., Tamiya, N. & Miyazawa, T. 1987. Proton nuclear magnetic resonance characterization of phospholipase A2 from Laticauda semifasciata. Journal of Biochemistry 101, 795804.CrossRefGoogle ScholarPubMed
Endo, T., Oya, M., Tamiya, N., Inooka, H., Ishibashi, Y., Kitada, C., Mizuta, E. & Fujino, M. 1989. Solution conformation of endothelin determined by nuclear-magnetic resonance and distance geometry. FEBS Letters 257, 149–54.CrossRefGoogle ScholarPubMed
Folhman, J., Eaker, D., Karlsson, E. & Thesleff, S. 1976. Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. European Journal of Biochemistry 68, 457–69.CrossRefGoogle Scholar
Fontecilla-Camps, J. C. 1989. Three-dimensional model of the insect-directed scorpion toxin from Androctonus australis Hector and its implication for the evolution of scorpion toxins in general. Journal of Molecular Evolution 29, 63–7.CrossRefGoogle ScholarPubMed
Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., Watt, D. D. & Bugg, C. E. 1980. Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. Proceedings of the National Academy of Sciences, USA 77, 6496–500.CrossRefGoogle ScholarPubMed
Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., Watt, D. D., Habersetzer-Rochat, C. & Rochat, H. 1988. Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proceedings of the National Academy of Sciences, USA 85, 7443–7.CrossRefGoogle ScholarPubMed
Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T. & Kobayashi, K. 1990. A potent antibacterial protein in Royal jelly. Purification and determination of the primary structure of royalisin. Journal of Biological Chemistry 265, 11333–7.CrossRefGoogle ScholarPubMed
Gatineau, E., Toma, F., Montenay-Garestier, T., Takechi, M., Fromageot, P. & Ménez, A. 1987. Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry 26, 8046–55.CrossRefGoogle ScholarPubMed
Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J. & Garcia, M. L. 1988. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proceedings of the National Academy of Sciences USA 85, 3329–33.CrossRefGoogle ScholarPubMed
Gordon, D., Jover, D., Couraud, F. & Zlotkin, E. 1984. The binding of the insect selective neurotoxin (AaIT) from scorpion venom to locust synaptosomal membranes. Biochimica Biophysica Acta 778, 349–58.CrossRefGoogle Scholar
Goyffon, M. & Chippaux, J. P. 1990. Animaux venimeux terrestres, Editions techniques, Encycl. Méd. Chir. Paris France. Intoxication, pathologie du travail 16078 A1014-1990, 14p.Google Scholar
Halpert, J. & Eaker, D. 1975. Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). Journal of Biological Chemistry 250, 6990–7.CrossRefGoogle ScholarPubMed
Hanzawa, H., Shimada, I., Kuzuhara, T., Komano, H., Kohda, D., Inagaki, F., Natori, S. & Arata, Y. 1990. 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Letters 269, 413–20.CrossRefGoogle ScholarPubMed
Harris, J. B. 1984. Phospholipases in snake venoms and their effects on nerve and muscle. Pharmacology and Therapeutics 31, 79102.CrossRefGoogle Scholar
Harris, J. B. 1991. Phospholipases in snake venoms and their effects on nerve and muscle. In Snake toxins, pp. 91129, ed. Harvey, A. L.. New York: Pergamon.Google Scholar
Harvey, A. L. 1985. Cardiotoxins from cobra venoms: possible mechanisms of action. Journal of Toxicology. (Toxins Reviews) 4, 4169.CrossRefGoogle Scholar
Harvey, A. L. 1992. From venom to toxin to drug? Proceedings of the Royal Society of Edinburgh, this volume.Google Scholar
Harvey, A. L. & Anderson, A. J. 1985. Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. Pharmaccology and Therapeutics 31, 3355.CrossRefGoogle ScholarPubMed
Harvey, A. L. & Anderson, A. J. 1991. Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. In Snake toxins, pp. 131–64 ed. Harvey, A. L.. New York: Pergamon.Google Scholar
Harvey, A. L., Anderson, A. J., Marshall, D. L., Pemberton, K. E. & Rowan, E. G. 1990. Facilitory neurotoxins and transmitter release. Journal of Toxicology. (Toxins Reviews) 9, 225–42.CrossRefGoogle Scholar
Hollecker, M. & Larcher, D. 1989. Conformation forces affecting the folding pathways of dendrotoxins I and K from black mamba venom. European Journal of Biochemistry 179, 8794.CrossRefGoogle Scholar
Joubert, F. J. & Taljaard, N. 1980. The amino acid sequence of two proteinase inhibitor homologues from Dendroaspis angusticeps venom. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 361, 661–74.CrossRefGoogle ScholarPubMed
Karlsson, E., Mbugua, P. M. & Rodriguez-Ithurralde, D. 1985. Anticholinesterase toxins. Pharmacology and Therapeutics 30, 259–76.CrossRefGoogle ScholarPubMed
Karlsson, E., Mbugua, P. M., Risinger, C., Jolkkonen, M., Wernstedt, C. & Adem, A. 1991. Amino acid sequence of a snake venom toxin that binds to the muscarinic acetylcholine receptor. Toxicon 29, 521–6.CrossRefGoogle Scholar
Kharrat, R., Darbon, H., Rochat, H. & Granier, C. 1989. Structure/activity relationships of scorpion α-toxins. Multiple residues contribute to the interaction with receptors. European Journal of Biochemistry 181, 381–90.CrossRefGoogle Scholar
Kini, R. M. & Evans, H. J. 1987. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. Journal of Biological Chemistry 262, 14401–7.CrossRefGoogle ScholarPubMed
Kini, R. M. & Evans, H. J. 1988. Correlation between the enzymatic activity, anticoagulant activity and platelet effects of phospholipase A2 isoenzymes from Naja nigricollis venom. Thrombosis and Haemostasis 60, 170–3.Google ScholarPubMed
Kobayashi, Y. 1990. Solution conformation of endothelin. In Peptides, chemistry, structure and biology. Proceedings of the 11th American Peptide Symposium, pp. 552556, eds Rivier, J. E. & Marshall, G. R. Leiden: ESCOM.Google Scholar
Kobayashi, Y., Bdolah, A., Graur, D. & Wollberg, Z. 1989. Sarafotoxins, a new group of cardiovascular modulations from snake venom. Memorias do Instituto Butantan 51, 205–10.Google Scholar
Kochva, E. 1991. The burrowing asps genus Actractaspis belongs to a separate family of venomous snakes the atractaspididae. Toxicon 29, 1049.CrossRefGoogle ScholarPubMed
Kochva, E., Bdolah, A., Graur, D. & Wollberg, Z. 1989. Sarafotoxins, a new group of cardiovascular modulations from snake venom. Memorias do Instituto Butantan 51, 205–10.Google Scholar
Kondo, K., Narita, K. & Lee, C.-Y. 1978. Amino acid sequences of the two polypeptide chains in β1 -bungarotoxin from the venom of Bungarus multicinctus (Formosan banded krait). Journal of Biochemistry 83, 101–15.CrossRefGoogle Scholar
Kondo, K., Narita, K. Lee, C.-Y., Toda, H., Narita, K. & Lee, C.-Y. 1982. Amino acid sequences of three β-bungarotoxins (β3-, β4- and βs-bungarotoxins) from Bungarus multicinctus venom. Amino acid substitutions in the A Chains. Journal of Biochemistry 91, 1531–48.CrossRefGoogle Scholar
Kopeyan, C., Martinez, G., Lissitzky, S., Miranda, F. & Rochat, H. 1974. Disulfide bonds of toxin II of the scorpion Androctonus australis Hector. European Journal of Biochemistry 47, 483–9.CrossRefGoogle ScholarPubMed
Kopeyan, C., Mansuelle, P., Sampieri, F., Brando, Th., Bahraoui, El M., Rochat, H. & Granier, C. 1990. Primary structure of scorpion anti-insect toxins isolated from the venom of Leiurus quinquestriatus quinquestriatus. FEBS Letters 261, 423–6.CrossRefGoogle ScholarPubMed
Kornalik, F. 1985. The influence of snake venom enzymes on blood coagulation. Pharmacology and Therapeutics 29, 353405.CrossRefGoogle ScholarPubMed
Labhardt, A. M., Hunziker-Kwik, E.-H. & Wüthrich, K. 1988. Secondary structure determination for α-neurotoxin from Dendroaspis polylepis polylepis based on sequence-specific 1H-nuclear-magnetic-resonance assignments. European Journal of Biochemistry 111, 295305.CrossRefGoogle Scholar
Lambert, J., Keppi, E., Dimarcq, J.-L., Wicker, C., Reichhart, J.-M., Dunbar, B., Lepage, P., van Dorsselaer, A., Hoffmann, J., Fothergill, J. & Hoffmann, D. 1989. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proceedings of the National Academy of Sciences, USA 86, 262–6.CrossRefGoogle ScholarPubMed
Laplante, S. R., Mikou, A., Robin, M., Guittet, E., Delsuc, M., Charpentier, I. & Lallemand, J.-Y. 1990. Rapid determination and NMR assignments of antiparallel sheets and helices of a scorpion and cobra toxin. International Journal of Peptide and Protein Research 36, 227–30.CrossRefGoogle ScholarPubMed
Li, Y.-S., Liu, K.-F., Wang, Q.-C., Ran, Y.-L. & Tu, G.-C. 1985. A platelet function inhibitor purified from Vipera russelli siamensis (Smith) snake venom. Toxicon 23, 895903.Google ScholarPubMed
Loring, R. H. &. Zigmond, R. E. 1988. Characterization of neuronal nicotinic receptors by snake venom neurotoxins. Trends in Neurochemical Sciences 11, 73–8.Google ScholarPubMed
Love, R. A. & Stroud, R. M. 1986. The crystal structure of α-bungarotoxin at 2.5 Å resolution: relation to solution and binding to acetylcholine receptor. Protein Engineering 1, 3746.CrossRefGoogle ScholarPubMed
Low, B. W., Preston, H. S., Sato, A., Rosen, L., Searl, J. E., Rudko, A. D. & Richardson, J. S. 1976. Three-dimensional structure of erabutoxic b neurotoxinc protein: inhibitor of acetylcholine receptor. Proceedings of the National Academy of Sciences, USA 78, 2991–4.CrossRefGoogle Scholar
Martins, J. C., Zhang, W., Tartar, A., Lazdunski, M. & Borremans, F. A. M. 1990. Solution conformation of leiurotoxin I (scyllatoxin) by 1H nuclear magnetic resonance. FEBS Letters 260, 249–53.CrossRefGoogle ScholarPubMed
Matsuyama, K. & Natori, S. 1988. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. Journal of Biological Chemistry 263, 17112–16.CrossRefGoogle ScholarPubMed
McCafferty, J., Grittiths, A. D., Winter, G. & Chiswell, D. J. 1990. Phage antibodies: filamentous phage dispaying antibody variable domains. Nature 348, 552–4.CrossRefGoogle ScholarPubMed
Mebs, D. 1985. List of biologically active components from snake venoms, Germany: Zentrum der Rechtsmedizin, University of Frankfurt.Google Scholar
Mebs, D. & Ownby, C. L. 1990. Myotoxic components of snake venoms: their biochemical and biological activities. Pharmacology and Therapeutics 48, 223–36.CrossRefGoogle ScholarPubMed
Ménez, A. 1989. Les principales toxines des venins des serpents elapidae et hydrophiidae. In Serpents venins envenimations, pp. 113–47. Lyon: Fondation M. Merrieux.Google Scholar
Ménez, A. 1991. Immunology of snake toxins. In Snake toxins, pp. 3590, ed. Harvey, A. L.. New York: Pergamon.Google Scholar
Ménez, A., Montenay-Garestier, Th., Fromageot, P. & Helene, C. 1980. Conformation of two homologous neurotoxins. Fluorescence and circular dichroism studies. Biochemistry 19, 5202–8.CrossRefGoogle ScholarPubMed
Ménez, A., Montenay-Garestier, Th., Fromageot, P., Gatineau, E., Roumestand, C., Harvey, A. L., Mouawad, L., Gilquin, B. & Toma, F. 1990. Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Biochimie 72, 575–88.CrossRefGoogle ScholarPubMed
Menziani, M. C., Cocchi, M., De Benedetti, P. G., Gilbert, R. G., Richards, W. G., Zamai, M. & Caiolfa, V. R. 1992. A theoretical study of the structure of big endothelin. Journal de Chimie Physique (in press).Google Scholar
Miller, C., Moczydlowski, E., Latorre, R. & Philips, M. 1985. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313, 316–18.CrossRefGoogle ScholarPubMed
Mills, R. G., Atkins, A. R., Harvey, T., Junius, F. K., Smith, R. & King, G. F. 1991. Conformation of sarafotoxin-6b in aqueous solution determined by NMR spectroscopy and distance geometry. FEBS Letters 282, 247–52.CrossRefGoogle ScholarPubMed
Mole, L. E., Goodfriend, L., Lapkoff, C. B., Kehoe, J. M. & Capra, J. D. 1975. The amino acid sequence of ragweed pollen allergen Ra5. Biochemistry 14, 1216–20.CrossRefGoogle ScholarPubMed
Oswald, R. E., Sutcliffe, M. J., Bamberger, M., Loring, R. H., Braswell, E. & Dobson, C. M. 1991. Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: Sequence-specific assignments, secondary structure, and dimer formation. Biochemistry 30, 4901–9.CrossRefGoogle ScholarPubMed
Pashkov, V. S., Maiorov, V. N., Bystrov, V. F., Hoang, A. N., Volkova, T. M. & Grishin, E. V. 1988. Solution spatial structure of “long” neurotoxin M9 from the scorpion Buthus eupeus by 1H-NMR spectroscopy. Biophysical Chemistry 31, 121–31.CrossRefGoogle ScholarPubMed
Pearson, J. A., Tyler, M. I., Retson, K. V. & Howden, M. E. H. 1991. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Autralian common brown snake (Pseudonaja textilis). 2. The amino acid sequence and toxicity studies of subunit D. Biochimica Biophysica Acta 1077, 147–50.CrossRefGoogle Scholar
Pelhate, M. & Zlotkin, E. 1981. Voltage-dependent slowing of the turn off of Na+ current in the cockroach giant axon induced by the scorpion venom “insect toxin”. Journal of Physiology (London) 319, 30P31P.Google Scholar
Physalix, M. 1922. Animaux venimeux et venins. Paris: Masson.Google Scholar
Possani, L. D. 1984. In Handbook of natural toxins, vol 2, pp. 513–30, ed. Tu, A. T. New York: Marcel Dekker.Google Scholar
Rees, B., Samama, J. P., Thierry, J. C., Gilibert, M., Fischer, J., Schweitz, H., Lazdunski, M. & Moras, D. 1987. Crystal structure of a snake venom cardiotoxin. Proceedings of the National Academy of Sciences, USA 84, 3132–6.CrossRefGoogle ScholarPubMed
Renetseder, R., Brunie, S., Dijkstra, B. W., Drenth, J. & Sigler, P. B. 1985. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. Journal of Biological Chemistry 260, 11627–34.CrossRefGoogle ScholarPubMed
Rochat, H., Rochat, C., Sampieri, F., Miranda, F. & Lissitzky, S. 1972. The amino-acid sequence of neurotoxin II of Androctonus australis Hector. European Journal of Biochemistry 28, 381–8.CrossRefGoogle ScholarPubMed
Rochat, H., Rochat, C., Sampieri, F., Miranda, F., Bernard, P. & Couraud, F. 1979. Scorpion toxins: chemistry and mode of action. In Advances in cytopharmacology, vol. 3, pp. 325–34, eds Ceccarelli, B. & Clementi, F. New York: Raven Press.Google Scholar
Roumestand, C., Gatineau, E., Gilquin, B., Ménez, A. & Toma, F. 1990. Site-directed chemical modificiations as an aid for the three-dimensional structure studies of the toxic site of a cardiotoxin using proton NMR and distance geometry calculations. In Peptides, chemistry, structure and biology, Proceedings of the 11th American Peptide Symposium, pp. 622–4, eds Rivier, J. E. & Marshall, G. R. Leiden: ESCOM.Google Scholar
Saudek, V., Hoflack, J. & Pelton, J. T. 1989. 1H-NMR study of endothelin, sequence-specific assignment of the spectrum and a solution structure. FEBS Letters 257, 145–8.CrossRefGoogle Scholar
Schulz, G. E. & Schirmer, R. H. 1979. In Principles of protein structure, Ed. Cantor, C. R. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Simard, M. & Watt, D. D. 1990. Venoms and toxins. In The biology of scorpions, pp. 414–44, ed. Polis, G. A. Stanford University Press.Google Scholar
Sissom, W. D. 1990. Systematics, biogeography and paleontology. In The biology of scorpions, pp. 65160, ed. Polis, G. A. Stanford University Press.Google Scholar
Slotboom, A. J., Verheij, H. M. & De Haas, G. H. 1982. On the mechanism of phospholipase A2. In Phospholipids, pp. 359434, eds Hawthorne, J. N. & Ansell, G. B. Elsevier Biomedical 4.Google Scholar
Stacker, K. F. 1990. Medical use of snake venom proteins. Boca Raton, USA: C.R.C. Press.Google Scholar
Strydom, D. J. 1977. Homology of functionally diverse proteins. Journal of Molecular Evolution 9, 349–61.CrossRefGoogle ScholarPubMed
Takagi, J., Sekiya, F., Kasahara, K., Inada, Y. & Saito, Y. 1988. Venom from southern copperhead snake (Agkistrodon conlortrix contortrix). II. A unique phospholipase A2 that induces platelet aggregation. Toxicon 26, 199206.CrossRefGoogle Scholar
Takechi, M., Tanaka, Y. & Hayashi, K. 1986. Binding of cardiotoxin analogue III from formosan cobra venom to FL cells. FEBS Letters 205, 143–6.CrossRefGoogle ScholarPubMed
Tamaoki, H., Kobayashi, Y., Nishimura, S., Ohkubo, T., Kyogoku, Y., Nakajima, K., Kumagaye, S.-I., Kimura, T. & Sakakibara, S. 1991. Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. Protein Engineering 4, 509–18.CrossRefGoogle ScholarPubMed
Tsai, I.-H., Liu, H.-C. & Chang, T. 1987. Toxicity domain in presynaptically toxic phospholipase A2 of snake venom. Biochimica Biophysica Acta 916, 94–9.CrossRefGoogle ScholarPubMed
Tsernoglou, D. & Petsko, G. A. 1976. The crystal structure of a post-synaptic neurotoxin from sea snake at 2.2 Å resolution. FEBS Letters 687, 14.CrossRefGoogle Scholar
Tyler, M. I., Barnett, D., Nicholson, P., Spence, I. & Howden, M. E. H. 1987. Studies on the subunit structure of textilotoxin, a potent neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). Biochimica Biophysica Acta 915, 210–16.CrossRefGoogle ScholarPubMed
Underwood, G. 1979. Classification and distribution of venomous snakes in the world. In Snake venoms, handbook of experimental pharmacology, pp. 1540, ed. Lee, C. Y. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Vidal, C. & Changeux, J.-P. 1989. Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: an electrophysiological study in a slice preparation. Neuroscience 29, 261–70.CrossRefGoogle Scholar
Walkinshaw, M. D., Saenger, W. & Maelicke, A. 1980. Three-dimensional structure of the “long” neurotoxin from cobra venom. Proceedings of the National Academy of Sciences, USA 77, 2400–4.CrossRefGoogle ScholarPubMed
White, S. P., Scott, D. L., Otwinowski, Z., Gelb, M. H. & Sigler, P. B. 1990. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 250, 1560–3.CrossRefGoogle Scholar
Yu, C., Lee, C.-S., Chuang, L.-C., Shei, Y.-R. & Wang, C. Y. 1990. Two-dimensional NMR studies and secondary structure of cobrotoxin in aqueous solution. European Journal of Biochemistry, 183, 789–99.CrossRefGoogle Scholar
Zlotkin, E., Kadouri, D., Gordon, D., Pelhate, M., Martin, M.-F. & Rochat, H. 1985. An excitatory and depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. Archives of Biochemistry and Biophysics 240, 877–87.CrossRefGoogle ScholarPubMed
Zlotkin, E., Eitan, M., Bindokas, V. P., Adams, M. E., Moyer, M., Burkhart, W. & Fowler, E. 1991. Functional duality and structural uniqueness of depressant insect-selective neurotoxins. Biochemistry 30, 4814–21.CrossRefGoogle ScholarPubMed
Zinn-Justin, S., Roumestand, C., Gilquin, B., Bontems, F., Ménez, A. & Toma, F. 1992. Three-dimensional solution structure of a curaremimetic toxin from Naja nigricollis venom: a proton NMR study and molecular modelling analysis. Biochemistry (submitted).CrossRefGoogle Scholar