Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:38:41.941Z Has data issue: false hasContentIssue false

Some aspects of flow over coastal dunes

Published online by Cambridge University Press:  05 December 2011

K. R. Rasmussen
Affiliation:
Geologisk Institut, Aarhus Universitet, Denmark
Get access

Synopsis

The paper discusses limits under which flux-gradient relationships derived for horizontal homogeneous terrain can be applied to aeolian transport over non-uniform terrain with coastal dunes. For flat sandy beaches the roughness change upstream of the beach-dune boundary can be expected to be small. For horizontal beaches that are some hundred metres wide and where the length scale of the horizontal heterogeneities does not exceed some tens of metres, consistent surface stress and aerodynamical roughness values may be deduced from the wind-speed profile.

Slope effects will modify the air flow strongly as it crosses a dune ridge or escarpment. Recent developments in the theory of turbulent flow over hills are discussed in relation to common coastal dune terrain. The depth of the layer where the profile is in equilibrium with the underlying surface typically does not exceed a few tens of centimeters. This strongly restricts our ability to derive reliable values for roughness and surface stress from the wind profile.

Experimental studies at two coastal dunes in Denmark indicate that it is often difficult to obtain a good upwind reference for the flow. Analysis with a numerical model, set up for one of the sites, suggests that information about the flow and the value of experimental data may be improved when these can be both related to and supported by numerical calculations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arya, S. P. 1982. Atmospheric boundary layers over homogeneous terrain. In Engineering Meteorology, 1st edn, ed. Plate, E., Ch. 6, pp. 233267. Amsterdam: Elsevier.Google Scholar
Ash, J. E. & Wasson, R. J. 1983. Vegetation and sand mobility in the Australian desert dune field. Zeitschrift ffr Geomorphologie N. F. Suppl-Bd. 45, 1525.Google Scholar
Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen, 265 pp.Google Scholar
Bowen, A. J. & Lindley, D. 1977. A wind tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes. Boundary Layer Meteorology 12, 259271.CrossRefGoogle Scholar
Bradley, E. F. 1968. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness. Quarterly Journal Royal Meteorological Society 94, 361379.CrossRefGoogle Scholar
Bradley, E. F. 1983. The influence of thermal stability and angle of incidence on the acceleration of wind up a slope. Journal of Wind Engineering and Industrial Aerodynamics 15, 231242.CrossRefGoogle Scholar
Brutsaert, W. H. 1982. Exchange processes at the earth-atmosphere interface. In Engineering Meteorology, 1st edn, ed. Plate, E., Ch. 8, pp. 319369. Amsterdam: Elsevier.Google Scholar
Buckley, 1987. The effect of sparse vegetation on the transport of dune sand by wind. Nature 325, 426428.CrossRefGoogle Scholar
Businger, J. A. 1973. Turbulent transfer in the atmospheric surface layer. In Workshop on Micrometereology, ed. Haugen, D. A., pp. 67100. Boston: American Meteorological Society.Google Scholar
Businger, J. A., Wyngard, J. C., Izumi, Y. & Bradley, E.F. 1971. Flux-profile relationships in the atmospheric surface layer. Journal of Atmospheric Sciences 28, 181189.2.0.CO;2>CrossRefGoogle Scholar
Charnock, H. 1955. Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society 81, 639640.CrossRefGoogle Scholar
Dyer, A. J. 1974. A review of flux-profile relationships. Boundary Layer Meteorology 7, 363372.CrossRefGoogle Scholar
Emeis, S. 1987. Pressure drag and effective roughness length with neutral stratification. Boundary Layer Meteorology 39, 379401.CrossRefGoogle Scholar
Fiedler, F. & Panofsky, H. A. 1972. The geostrophic drag coefficient and the effective roughness length. Quarterly Journal Royal Meteorological Society 98, 213220.Google Scholar
Fleagle, R. G. & Businger, J. A. 1980. An Introduction to Atmospheric Physics, 2nd edn. New York: Academic Press, 432 pp.Google Scholar
Gross, G. 1987. A numerical study of the air flow within and around a single tree. Boundary Layer Meteorology 40, 311327.CrossRefGoogle Scholar
Hsu, S. 1971. Measurements of shear stress and roughness length on a beach. Journal of Geophysical Research 76, 28802885.CrossRefGoogle Scholar
Huang, N. E., Bliven, L. F., Long, S. R. & De Leonibus, P. D. 1986. A study of the relationships among wind speed, sea state and the drag coefficient for a developing wave field. Journal of Geophysical Research 91, 77337742.CrossRefGoogle Scholar
Hunt, J. C. R. 1980. Wind over hills. In: Workshop on the Planetary Boundary Layer, ed. Wyngaard, J. C., pp. 107149. Boston: American Meteorological Society.Google Scholar
Hunt, J. C. R. & Simpson, J. E. 1982. Atmospheric boundary layers over non-homogeneous terrain. In Engineering Meteorology, 1st edn, ed. Plate, E., Ch. 7, pp. 269318. Amsterdam: Elsevier.Google Scholar
Hunt, J. C. R., Leibovich, S. & Richards, K. J. 1988. Turbulent shear flows over low hills. Quarterly Journal Royal Meteorological Society 114, 14351470.CrossRefGoogle Scholar
Högström, U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary Layer Meteorology 42, 5578.CrossRefGoogle Scholar
Jackson, N. A. 1976a. The propagation of modified flow downstream of a change in roughness. Quarterly Journal Royal Meteorological Society 102, 924933.Google Scholar
Jackson, N. A. 1976b. The influence of local terrain features on the site selection for wind energy generating systems. Report BLWT-I–1979. Faculty of Engineering Science, The University of Western Ontario, London, Ontario, Canada.Google Scholar
Jackson, N. A. & Hunt, J. C. R. 1975. Turbulent wind flow over a low hill. Quarterly Journal Royal Meteorological Society 101, 929955.CrossRefGoogle Scholar
Jackson, P. S. 1977. Aspects of surface wind behaviour. Wind Engineering 1, 114.Google Scholar
Jensen, N. O. 1978. Change in surface roughness and the planetary boundary layer. Quarterly Journal Royal Meteorological Society 104, 351357.CrossRefGoogle Scholar
Jensen, N. O. 1983. Escarpment induced flow perturbations, a comparison of measurements and theory. Journal of Wind Engineering and Industrial Aerodynamics 15, 243251.CrossRefGoogle Scholar
Jensen, N. O. & Zeman, O. 1985. Perturbation to mean wind and turbulence in flow over topographic forms. In Proceedings of International Workshop on the Physics of Blown Sand, ed. Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R. & Willetts, B. B., Vol. 2, pp. 351368. Aarhus: Institute of Mathematics.Google Scholar
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R. 1972. Spectral characteristics of surface layer turbulence Quarterly Journal Royal Meteorological Society 98, 563589.Google Scholar
Kondo, J. & Yamazawa, H. 1986. Aerodynamical roughness over an inhomogeneous ground surface. Boundary Layer Meteorology 35, 331348.CrossRefGoogle Scholar
Lettau, H. 1969. Note on aerodynamical roughness-parameter estimation on the basis of roughness element description. Journal Applied Meteorology 8, 828832.2.0.CO;2>CrossRefGoogle Scholar
Lyles, L. & Allison, B. E. 1981. Equivalent wind-erosion protection from selected crop residues. Transactions, American Society Agricultural Engineers 24, 405408.CrossRefGoogle Scholar
Lyles, L., Schrandt, R. L. & Schmeidler, N. F. 1974. How aerodynamical roughness elements control sand movement. Transactions, American Society Agricultural Engineers 17, 134139.CrossRefGoogle Scholar
Marshall, J. K. 1971. Drag measurements in roughness arrays of varying density and distribution. Agricultural Meteorology 8, 269292.CrossRefGoogle Scholar
Mason, P. J. 1987. The formation of areally-averaged roughness lengths. Quarterly Journal Royal Meteorological Society 114, 399420.Google Scholar
Mason, P. J. & Sykes, R. I. 1979. Flow over an isolated hill of moderate slope. Quarterly Journal Royal Meteorological Society 105, 383395.CrossRefGoogle Scholar
Mikkelsen, H. E. 1987. The dynamic interaction between dune shape, flow field and sediment motion. In Proc. of the IUTAM Symposium (London, August 1986), eds Smith, F. T. & Brown, S. N.Google Scholar
Mikkelsen, H. E. 1989. Wind flow and sediment transport over a low coastal dune. Geoskrifter nr. 32. Institute of Geology, University of Aarhus, Denmark, 60 pp.Google Scholar
Monin, A. S. & Yaglom, A. M. 1971. Statistical Fluid Mechanics: The Mechanics of Turbulence. Cambridge, Mass.: M.I.T. Press, 769 pp.Google Scholar
Nappo, C. J. 1977. Mesoscale flow over complex terrain during the Eastern Tennessee trajectory experiment (ETTEX). Journal of Applied Meteorology 16, 11861196.2.0.CO;2>CrossRefGoogle Scholar
Owen, P. R. 1964. Saltation of uniform grains in air. Journal of Fluid Mechanics 20, 225242.CrossRefGoogle Scholar
Panofsky, H. A. & Ming, Z. 1982. Characteristics of wind profiles over complex terrain. Journal Wind Engineering and Industrial Aerodynamics 15, 177183.CrossRefGoogle Scholar
Pasquill, F. 1972. Some aspects of boundary layer description. Quarterly Journal Royal Meteorological Society 98, 469494.CrossRefGoogle Scholar
Peterson, E. W. 1972. Relative importance of terms in the turbulent energy and momentum equations as applied to the problem of surface roughness change. Journal of Atmospheric Sciences 29, 14701476.2.0.CO;2>CrossRefGoogle Scholar
Plate, E. J. 1971. Aerodynamic characteristics of atmospheric boundary layers. U.S. Atomic Energy Commission, Division Technical Information, TID-25465, Oak Ridge, Tennessee.CrossRefGoogle Scholar
Raithby, G. D., Stubley, G. D. & Taylor, P. A. 1987. The Askervein hill Project: a finite control volume prediction of three dimensional flow over the hill. Boundary Layer Meteorology 39, 247267.CrossRefGoogle Scholar
Raupach, M. R. 1988. Canpopy transport processes. In Flow and Transport in the Natural Environment: Advances and Applications, 1st edn, eds Steffen, W. L. & Denmead, O. T., pp. 95127. Heidelberg: Springer-Verlag.Google Scholar
Rasmussen, K. R. & Mikkelsen, H. E. 1988. Aeolian transport in a boundary layer wind tunnel. Geoskrifter No. 29. The Institute of Geology, University of Aarhus, Denmark, 24 pp.Google Scholar
Rasmussen, K. R., Sørensen, M. & Willetts, B. B. 1985. Measurement of saltation and wind strength on beaches. In Proceedings of International Workshop on the Physics of Blown Sand, eds Barndorff-Nielsen, O. E., Meller, J. T., Rasmussen, K. R. & Willetts, B. B., Vol. 2, pp. 301325. Aarhus: Institute of Mathematics.Google Scholar
Sykes, R. I. 1980. An asymptotic theory of incompressible flow over a small hump. Journal of Fluid Mechanics 101, 647670.CrossRefGoogle Scholar
Sørensen, M. 1985. Estimation of some aeolian saltation transport parameters from transport rate profiles. In Proceedings of International Workshop on the Physics of Blown Sand, eds Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R. & Willetts, B. B., Vol. 1, pp. 141190. Aarhus: Institute of Mathematics.Google Scholar
Taylor, P. A. 1987. Comments and further analysis on effective roughness length for use in numerical three-dimensional models. Boundary Layer Meteorology 39, 403418.CrossRefGoogle Scholar
Taylor, P. A., Walmsley, J. L. & Salmon, J. R. 1983. A simple model of neutrally stratified boundary layer flow over real terrain incorporating wavenumber dependent scaling. Boundary Layer Meteorology 26, 169189.CrossRefGoogle Scholar
Teunissen, H. W. 1983. Wind-tunnel and full scale comparison of mean wind flow over an isolated low hill. Journal of Wind Engineering and Industrial Aerodynamics 15, 271286.CrossRefGoogle Scholar
Thompson, R. S. 1978. Note on aerodynamical roughness length for complex terrain. Journal Applied Meteorology 17, 14021403.2.0.CO;2>CrossRefGoogle Scholar
Townsend, A. A. 1965. Self-preserving flow inside a turbulent boundary layer. Journal Fluid Mechanics 593, 773797.CrossRefGoogle Scholar
Tsoar, H. 1983a. Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology 30, 567578.CrossRefGoogle Scholar
Tsoar, H. 1983b. Deflection of sand movement on a sinuous longitudinal (seif) dune. Sedimentary Geology 36, 2539.CrossRefGoogle Scholar
Tsoar, H., Rasmussen, K. R., Sorensen, M. & Willetts, B. B. 1985. Laboratory studies of flow over dunes. In Proceedings of International Workshop on the Physics of Blown Sand, eds Barndorff-Nielsen, O. E., Møiler, J. T., Rasmussen, K. R. & Willetts, B. B., Vol. 2, pp. 237349. Aarhus: Institute of Mathematics.Google Scholar
Walmsley, J. L., Salmon, J. R. & Taylor, P. A. 1982. On the application of a model of boundary-layer flow over low hills to real terrain. Boundary Layer Meteorology 23, 1746.CrossRefGoogle Scholar
Zeman, O. & Jensen, N. O. 1987. Modification of turbulence characteristics in flow over hills. Quarterly Journal Royal Meteorological Society 113, 5580.CrossRefGoogle Scholar