Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:37:16.486Z Has data issue: false hasContentIssue false

Secondary metabolites

Published online by Cambridge University Press:  05 December 2011

Peter G. Waterman
Affiliation:
Phytochemistry Research Laboratories, Department of Pharmaceutical Sciences, University of Strathclyde, Glasgow G1 1XW, Scotland, U.K.
Get access

Synopsis

All plants expend energy and nutrients in the production of secondary metabolites. Ecosystem-level studies on the production of metabolites in African rain forests are reviewed and factors influencing the production and distribution of phenolic compounds discussed. These compounds appear to influence feeding behaviour in primate herbivores and may also be important in mediating the rate of leaf litter decomposition and nutrient recycling. Many metabolites are biologically active and some have proved to have medicinal value: research on some plant families that occur widely in West African forests and which have proved to be particularly rich sources of new metabolites is reviewed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranga, D. 1983. Changes in chemical composition of food parts in the diet of colobus monkeys. Ecology 64, 688–73.CrossRefGoogle Scholar
Calvert, J. J. 1985. Food selection by western gorillas (G. g. gorilla) in relation to food chemistry. Oecologia 65, 236–46.CrossRefGoogle Scholar
Champagne, D. E., Koul, O., Isman, M. B., Scudder, G. G. E., & Towers, G. H. N. 1992. Biological activity of limonoids from the Rutales. Phytochemistry 31, 377–94.CrossRefGoogle Scholar
Chapin, F. S., Vitousek, P. M., & van Cleve, K., 1986. The nature of nutrient limitation in plant communities. American Naturalist 127, 4558.Google Scholar
Coley, P. D. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia (Berlin) 70, 238–42.Google Scholar
Coley, P. D., Bryant, J. P., & Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230, 895–9.CrossRefGoogle ScholarPubMed
Connolly, J. D. 1983. Limonoids of the Meliaceae and Cneoraceae. In Waterman, P. G., & Grundon, M. F., (Eds) Chemistry and chemical taxonomy of the Rutales, pp. 175213. London: Academic Press.Google Scholar
Cunningham, A. B. 1990. African medicinal plants: setting priorities at the interface of conservation and primary health. WWF Report 331. Plant Conservation Section, WWF International.Google Scholar
Dictionary of Natural Products. 1995. CD-ROM Version 4.1. London: Chapman and Hall.Google Scholar
Gartlan, J. S., McKey, D. B., Waterman, P. G., Mbi, C. N., & Struhsaker, T. T. 1980. A comparative study of the phytochemistry of two African rain forests. Biochemical Systematics & Ecology 8, 401–22.Google Scholar
Gautier-Hion, A., 1983. Leaf consumption by monkeys in western and eastern Africa: a comparison. African Journal of Ecology 21, 107–13.Google Scholar
Geissman, T. A., & Crout, D. H. G. 1969. Organic chemistry of plant secondary metabolism. San Francisco: Freemanm Cooper & Co.Google Scholar
Harborne, J. B. 1988. Introduction to ecological biochemistry (3rd Ed). London: Academic Press.Google Scholar
Handley, W. R. C. 1954. Mull and mor formation in relation to forest soils. Forestry Commission Bulletin No. 23.Google Scholar
Handley, W. R. C. 1961. Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen. Plant Soil 15, 3773.Google Scholar
Harrison, M. J. S., & Hladik, C. M. 1986. Un primate granivore: le colobe noir dans le foret du Gabon; potentialite d'evolution du comportement alimentaire. Revue Ecologique (Terre Vie) 41, 281–97.Google Scholar
Haslam, E. 1985. Metabolites and metabolism. Oxford: Clarendon Press.Google Scholar
Hegnauer, R. 1989. Chemotaxonomie der pflanzen, Vol. 8. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Hegnauer, R. 1990. Chemotaxonomie der pflanzen, Vol. 9. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Hegnauer, R. 1992. Chemotaxonomie der pflanzen, Vol. 10. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Hladik, A., & Hladik, C. M. 1977. Signification ecologique des tereurs en alcaloides des vegetaux de la foret dense: resultats des tests preliminaires effectues au Gabon. La Terre et la Vie 31, 515–55.Google Scholar
Janzen, D. H. 1974. Tropical blackwater rivers, animals and mast fruiting by the Dipterocarpaceae. Biotropics 6, 69103.Google Scholar
Kubitzki, K., & Gottlieb, O. R. 1984. Phytochemical aspects of angiosperm origin and evolution. Acta Botanica Neerlandica 33, 457–68.CrossRefGoogle Scholar
Kuiters, A. T. 1990. Role of phenolic substances from decomposing forest litter on plant-soil interactions. Acta Botanica Neerlandica 39, 329–48.Google Scholar
Lebreton, P. 1982. Tanins ou alcaloides: deux tactiques phytochemiques de dissuasion des herbivores. Revue Ecologique (Tierre Vie) 36, 539–72.Google Scholar
Marston, A., & Hostettmann, K. 1987. Antifungal, mollescicidal and cytotoxic compounds from plants used in traditional medicine. In Hostettmann, K., & Lea, P. J., (Eds) Biologically active natural products, pp. 6583. Oxford: Oxford Science Publications.Google Scholar
McKey, D. B., Gartlan, J. S., Waterman, P. G., & Choo, G. M. 1981. Food selection by black colobus monkeys (Colobus satanas) in relation to plant chemistry. Biological Journal of the Linnean Society 16, 115–46.CrossRefGoogle Scholar
Middleton, J. 1984. Are plant toxins aimed at decomposers? Experentia 40, 299301.Google Scholar
Mole, S., & Waterman, P. G. 1988. Light-induced variation in phenolic levels in foliage of rain forest plants. II. Potential significance to herbivores. Journal of Chemical Ecology 14, 2332.CrossRefGoogle ScholarPubMed
Mole, S., Ross, J. A. M., & Waterman, P. G. 1988. Light-induced variation in phenolic levels in foliage of rain forest plants. I. Chemical changes. Journal of Chemical Ecology 14, 121.Google Scholar
Ngadjui, B. T., Ayafor, J. F., Sondengam, B. L., Connolly, J. D., Rycroft, D. S., Khalid, S. A., Waterman, P. G., Brown, N. M. D., Grundon, M. F., & Ramachandran, V. N. 1982. The structures of vepridimerines A–D, four new dimeric prenylated quinolone alkaloids from Vepris louisii and Oricia renieri (Rutaceae). Tetrahedron Letters 23, 2041–4.Google Scholar
Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilva, G. L., & Mole, S. 1990. Determinants of variation in tropical forest primate biomass: new evidence from west Africa. Ecology 71, 328–43.Google Scholar
Oliver-Bever, B., 1986. Medicinal plants in Tropical West Africa. Cambridge: Cambridge University Press.Google Scholar
Rice, E. L., & Pancholy, S. K. 1971. Inhibition of nitrification by climax ecosystems II. Additional evidence and possible role of tannins. American Journal of Botany 60, 691702.CrossRefGoogle Scholar
Rogers, E. M., Maisels, F., Williamson, E. A., Fernandez, M., & Tutin, C. E. G. 1990. Gorilla diet in Gabon: a nutritional analysis. Oecologia (Berlin) 84, 326–39.CrossRefGoogle Scholar
Waterman, P. G. 1986. A phytochemist in the African rain forest. Phytochemistry 25, 317.Google Scholar
Waterman, P. G. 1992. The roles of plant secondary metabolites. In Charles, J., & Williams, D. H., (Eds) The evolution and function of secondary metabolites, London: Ciba Foundation., 255–75Google Scholar
Waterman, P. G. 1994. Costs and benefits of secondary metabolite production in leguminosae. Advances in Legume Science 4, 129–49.Google Scholar
Waterman, P. G., & Gray, A. I. 1987. Chemical systematics. Natural Products Reports, 4, 175203.Google Scholar
Waterman, P. G., & Mole, S. 1989a. Extrinsic factors influencing production of secondary metabolites in plants. In Bernays, E. A. (Ed). Insect-Plant Interactions, Vol 1, pp. 107–34. Florida: CRC press.Google Scholar
Waterman, P. G., & Mole, S. 1989b. Soil nutrients and plant secondary compounds. In Proctor, J., (Ed.). Mineral nutrients in tropical and savanna ecosystems, pp. 241–54. Oxford: Blackwell Scientific Publications.Google Scholar
Waterman, P. G., Meshal, I. A., Hall, J. B., & Swaine, M. D. 1978. Biochemical systematics and ecology of the Toddalioideae in the central part of the west African forest zone. Biochemical Systematics & Ecology 6, 239–45.Google Scholar
Waterman, P. G., Choo, G. M., Vedder, A. L., & Watts, D. 1983. Digestibility, digestion-inhibitors and nutrients of herbaceous foliage and green stems from an African montane flora and comparison with other tropical flora. Oecologia 60, 244–9.Google Scholar
Waterman, P. G., Ross, J. A. M., & McKey, D. B. 1985. Factors affecting levels of some phenolic compounds, digestibility and nitrogen content of the mature leaves of Barteria fistulosa (Passifloraceae). Journal of Chemical Ecology 10, 387401.CrossRefGoogle Scholar
Waterman, P. G., Ross, J. A. M., Bennett, E. L., & Davies, A. G. 1988. A comparison of the floristics and leaf chemistry of the tree flora of two Malaysian rain forests and the influence of leaf chemistry on populations of colobine monkeys in the Old World. Biological Journal of the Linnean Society 34, 132.Google Scholar
Waterman, P. G., & McKey, D. B. 1989. Herbivory and secondary metabolites in rain-forest plants. In Lieth, H., & Werger, M. J. A., (Eds) Tropical rainforest ecosystems, pp. 513–36. Amsterdam: Elsevier Science Publishers.Google Scholar
Wink, K., & Witte, L. 1983. Evidence for a widespread occurrence of the genes of quinolizidine alkaloid biosynthesis. Induction of alkaloid accumulation in all suspension cultures of alkaloid-‘free’ species. FEBS Letters 159, 196200.Google Scholar