Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:21:25.977Z Has data issue: false hasContentIssue false

Reversibility of acidification: soils and surface waters

Published online by Cambridge University Press:  05 December 2011

Richard F. Wright
Affiliation:
Norwegian Institutefor Water Research, Box 69 Korsvoll, N-0808 Oslo, Norway
Michael Hauhs
Affiliation:
Institute for Soil Science and Forest Nutrition, University of Göttingen, D-3400 Göttingen, Germany
Get access

Synopsis

As empirical relationships between acidic deposition and its effects on soils and surface waters have become increasingly understood, the focus of attention has shifted to the reversal of acidification in response to decreased amounts of acidic deposition.

Recent decreases in acidic deposition, in both North America and parts of Europe, have initiated the reversal of acidification and the recovery of impacted ecosystems. Reversal has also been investigated in large-scale experiments with whole ecosystems. Predictive models can account for much of this empirical and experimental data, at least at the catchment scale, over periods of years.

Discrepancies between observed and predicted effects are attributable in part to the increasingly important role of nitrogen in soil and water acidification. ‘Nitrogen saturation’ threatens to offset the incipient recovery following decreases in SO2 emissions. Future climate change might further exacerbate the problem by increasing the rate of mineralisation of soil organic matter and releasing stored nitrogen.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamsen, A. & Stuanes, A. 1980. Effects of simulated rain on the effluent from lysimeters with acid, shallow soil, rich in organic matter. In Ecological Impact of Acid Precipitation. pp. 152–3, eds., Drabløs, D. & Tollan, A. Ås-NLH, Norway: SNSF-project.Google Scholar
Abrahamsen, G., Tveite, O. & Stuanes, A. O. 1987. Wet acid deposition effects on soil properties in relation to forest growth: experimental results. In Woody Plant Growth in a Changing Physical and Chemical Environment. Vancouver: IUFRO.Google Scholar
Barrett, C. F., Atkins, D. H. F., Cape, J. N., Crabtree, J., Davies, T. D., Derwent, R. G., Fisher, B. E. A. & Fowler, D. 1987. Acid Deposition in the United Kingdom 19811985, p. 104. Stevenage, Herts. UK: Warren Spring Laboratory.Google Scholar
Battarbee, R. W., Flower, R. J., Stevenson, A. C., Jones, V. J., Harriman, R. & Appleby, P. G. 1988. Diatom and chemical evidence for reversibility of acidification of Scottish lochs. Nature 332, 530–2.CrossRefGoogle Scholar
Bjør, K. & Teigen, O. 1980. Effects of acid precipitation on soil and forests: 6. Lysimeter experiment in greenhouse. In Ecological Impact of Acid Precipitation, pp. 200–1, eds., Drablos, D. & Tollan, A. Ås-NLH, Norway: SNSF-project.Google Scholar
Brakke, D. F., Henriksen, A. & Norton, S. A. 1987. The relative importance of acidity sources for humic lakes in Norway. Nature 329, 432–4.CrossRefGoogle Scholar
Brown, K. A. 1987. Chemical effects of pH 3 sulphuric acid on a soil profile. Water Air and Soil Pollution 32, 201–18.CrossRefGoogle Scholar
Christophersen, N., Seip, H. M. & Wright, R. F. 1982. A model for streamwater chemistry at Birkenes, Norway. Water Resource Research 18, 977–86.CrossRefGoogle Scholar
Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. 1985a. Modelling the effects of acid deposition: assessment of a lumped-parameter model of soil water and streamwater chemistry. Water Resource Research 21, 5163.CrossRefGoogle Scholar
Cosby, B. J., Wright, R. F., Hornberger, G. M. & Galloway, J. N. 1985b. Modelling the effects of acid deposition: estimation of long-term water quality responses in a small forested catchment. Water Resource Research 21, 1591–601.CrossRefGoogle Scholar
Cosby, B. J., Hornberger, G. M., Wright, R. F. & Galloway, J. N. 1986. Modelling the effects of acid deposition: control of long-term sulfate dynamics by soil sulfate adsorption. Water Resource Research 22, 1283–91.CrossRefGoogle Scholar
Cronan, C. S., Reiners, W. A., Reynolds, R. C. & Lang, G. E. 1978. Forest floor leaching: contributions from mineral, organic and carbonic acids in New Hampshire subalpine forests. Science 200, 309–11.CrossRefGoogle ScholarPubMed
Dillon, P. J., Reid, R. A. & Girard, R. 1986. Changes in the chemistry of lakes near Sudbury, Ontario, following reductions in SO2 emissions. Water Air and Soil Pollution 31, 5965.CrossRefGoogle Scholar
Dillon, P. J., Reid, R. A., & de Grosbois, E. 1987. The rate of acidification of aquatic ecosystems in Ontario, Canada. Nature 329 45–8.CrossRefGoogle Scholar
Dochiger, L. S. & Seliga, T. A. (eds.) 1976. Proceedings First International Symposium Acid Precipitation and the Forest Ecosystem. Upper Darby, PA: U.S. Forest Service, p. 1074.Google Scholar
Drabløs, D. & Tollan, A. (eds.) 1980. Ecological Impact of Acid Precipitation, p. 383. As-NLH, Norway: SNSF-project.Google Scholar
Driscoll, C. T., Likens, G. E., Hedin, L. O., Eaton, J. S. & Bormann, F. H. 1989a. Changes in the chemistry of surface waters. Environmental Science and Technology 23, 137–43.CrossRefGoogle Scholar
Driscoll, C. T., Schaefer, D. A., Molot, L. A. & Dillon, P. J. 1989b. Summary of North American data. In The Role of Nitrogen in the Acidification of Soils and Surface Waters, pp. 145, eds., Malanchuk, J. L. & Nilsson, J. Copenhagen: Nordic Counc. Ministers.Google Scholar
Falkengren-Grerup, U., Linnermark, N. & Tyler, G. 1987. Changes in acidity and cation pools of south Swedish soils. Chemosphere 16, 2239–48.CrossRefGoogle Scholar
Gherini, S. A., Mok, L., Hudson, R. J., Davis, G. F., Chen, C. W. & Goldstein, R. A. 1985. The ILWAS model: formulation and application. Water Air and Soil Pollution 26, 425–59.CrossRefGoogle Scholar
Gorham, E. 1958a. Free acids in British soils. Nature 181, 106.CrossRefGoogle Scholar
Gorham, E. 1958b. The influence and importance of daily weather conditions in the supply of chloride, sulphate, and other ions to freshwaters from atmospheric precipitation. Philosophical Transactions of the Royal Society (B) 241, 147–78.Google Scholar
Gulbrandsen, R., Bakke, T., Grande, M., Hessen, D., Konieczny, R., Magnusson, J. & Wright, R. F. 1990. Climate change – effects in the aquatic environment. Report O-89258, Norwegian Institute for Water Research, Oslo (in Norwegian).Google Scholar
Harriman, R. 1989. Patterns of surface water acidification in Scotland. In Acidification in Scotland. Edinburgh: Scottish Development Department.Google Scholar
Hauhs, M. 1990a. Ecological modelling: science or technology. Journal of Hydrology 116, 2533.CrossRefGoogle Scholar
Hauhs, M. 1990b. Lange Bramke: an ecosystem study of a forested watershed. In Acidic Precipitation Vol. 1 Case Studies, pp 275305, eds. Adriano, D. C. & Havas, M. New York: Springer-Verlag.Google Scholar
Hauhs, M. & Wright, R. F. 1988. Acid deposition: reversibility of soil and water acidification – A review. Brussels: Comm. of European Communities.Google Scholar
Hedin, L. O., Likens, G. E. & Bormann, F. H. 1987. Decrease in precipitation acidity resulting from decreased SO4 concentration. Nature 325, 244–6.CrossRefGoogle Scholar
Henriksen, A. 1980. Acidification of freshwaters – a large scale titration. In Ecological Impact of Acid Precipitation, pp. 6874, eds., Drabløs, D. & Tollan, A. Ås-NLH, Norway: SNSF-project.Google Scholar
Henriksen, A., Lien, L., Traaen, T. S., Sevaldrud, I. S. & Brakke, D. F. 1988. Lake acidification in Norway – Present and predicted status. Ambio 17, 259–66.Google Scholar
Hindar, A., Næss, K. & Molvjær, J. 1989. Significance of acid rain for increased nitrogen loading to fjords. Report O-88035 Norwegian Institute for Water Research, Oslo (in Norwegian).Google Scholar
Johnson, D. W. & Todd, D. E. 1983. Some relationships among Fe, Al, C, and SO4 in a variety of forest soils. Soil Science Society of America Journal 47, 792800.CrossRefGoogle Scholar
Johnson, D. W., Hornbeck, J. W., Kelly, J. M., Swank, W. T. & Todd, D. E. 1980. Regional patterns of soil sulfate accumulation: relevance to ecosystem sulfur budgets. In Atmospheric Sulfur Deposition: Environmental Impact and Health Effects, pp. 507–20, eds., Shriner, D. S., Richmond, C. R. and Lindberg, S. E. Ann Arbor: Butterworth.Google Scholar
Keller, W. & Pitblado, J. R. 1986. Water quality changes in Sudbury area lakes: comparison of synoptic surveys in 1974–76 and 1981–83. Water Air and Soil Pollution 29, 285–96.CrossRefGoogle Scholar
Keller, W., Pitblado, J. R. & Conroy, N. I. 1986 Water quality improvements in the Sudbury, Ontario, Canada area related to reduced smelter emissions. Water Air and Soil Pollution 31, 765–74.CrossRefGoogle Scholar
LaZerte, B. D. & Dillon, P. J. 1984. Relative importance of anthopogenic versus natural sources of acidity in lakes and streams in central Ontario. Canadian Journal of Fisheries and Aquatic Sciences 41, 1664–77.CrossRefGoogle Scholar
Lee, J. J. & Weber, D. E. 1982. Effects of sulfuric acid rain on major cation and sulfate concentrations of water percolating through two model hardwood forests. Journal of Environmental Quality 11, 5764.CrossRefGoogle Scholar
Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. and Johnson, N. M. 1977. Biogeochemistry of a Forested Ecosystem, p. 146. New York: Springer-Verlag.CrossRefGoogle Scholar
Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. & Munn, R. E. 1984. Long-term trends in precipitation chemistry at Hubbard Brook, New Hampshire, USA. Atmospheric Environment 18, 2641–7.CrossRefGoogle Scholar
Maclsaac, H. J., Keller, W., Hutchinson, T. C. & Yan, N. D. 1986. Natural changes in the planktonic rotifera of a small acid lake near Sudbury, Ontario following water quality improvements. Water Air and Soil Pollution 31, 791–7.CrossRefGoogle Scholar
Martin, H. C. (ed.) 1986. Acidic Precipitation, Parts 1 and 2. Water Air and Soil Pollution 30, 1–1053; 31, 11118.CrossRefGoogle Scholar
Matzner, E. & Ulrich, B. 1984. Rates of deposition, internal production, and turnover of protons in two forest ecosystems. Z. Pflanzennähr. Bodenkunde 147, 290308.CrossRefGoogle Scholar
National Research Council, 1986. Acid Deposition Long-Term Trends, p. 506, Washington, D.C.: National Academy Sciences.Google Scholar
Norton, S. A., Mitchell, M. J., Kahl, J. S. & Brewer, G. F. 1988. In-lake alkalinity generation by sulfate reduction: a paleolimnological assessment. Water Air Soil and Pollution 39, 3345.CrossRefGoogle Scholar
Reuss, J. O. & Johnson, D. W. 1986. Acid Deposition and the Acidification of Soils and Waters, p. 119. New York: Springer-Verlag.CrossRefGoogle Scholar
Reuss, J. O., Christophersen, N. & Seip, H. M. 1986. A critique of models for freshwater and soil acidification. Water Air and Soil Pollution 30, 909–30.CrossRefGoogle Scholar
Reuss, J. O., Cosby, B. J. & Wright, R. F. 1987. Chemical processes governing soil and water acidification. Nature 329, 2732.CrossRefGoogle Scholar
Rochelle, B. P., Church, M. R. & David, M. B. 1987. Sulfur retention at intensively studied sites in the U.S. and Canada. Water Air and Soil Pollution 33, 7383.CrossRefGoogle Scholar
Ryan, P. F., Hornberger, G. M., Cosby, B. J., Galloway, J. N., Webb, J. R. & Rastetter, E. B. 1989. Changes in the chemical composition of stream water in two catchments in the Shenandoah National Park, Virginia, in response to atmospheric deposition of sulfur. Water Resource Research 25, 2091–99.CrossRefGoogle Scholar
Schindler, D. W. 1986. The significance of in-lake alkalinity production. Water Air and Soil Pollution 30, 931–44.CrossRefGoogle Scholar
Seip, H. M. 1980. Acidification of freshwater – sources and mechanisms. In Ecological Impact of Acid Precipitation, pp. 358–66, eds., Drabløs, D. & Tollan, A. Ås-NLH, Norway: SNSF-project.Google Scholar
Sevaldrud, I. H., Muniz, I. P. & Kalvenes, S. 1980. Loss of fish populations in southern Norway. Dynamics and magnitude of the problem. In Ecological Impact of Acid Precipitation, pp. 350–1, eds., Drabløs, D. & Tollan, A. Ås-NLH, Norway: SNSF-project.Google Scholar
Smith, R. A. & Alexander, R. B. 1986. Correlations between stream sulphate and regional SO2 emissions. Nature 322, 722–4.CrossRefGoogle Scholar
Stuanes, A. O., Abrahamsen, G. & Tveite, B. 1987. Effect of artificial rain on soil chemical properties and forest growth. In Effects of Air Pollution on Terrestrial and Aquatic Ecosystems, pp. 248–53, ed., Mathy, P. Brussels: Comm. European Communities.Google Scholar
Tamm, C. O. & Hallbäcken, L. 1986. Changes in soil pH over a 50-yr period under different forest canopies in SW-Sweden. Water Air and Soil Pollution, 31, 337–41.CrossRefGoogle Scholar
Thompson, M. E. 1987. Comparison of excess sulfate yields and median pH values of rivers in Nova Scotia and Newfoundland. Water Air and Soil Pollution 35, 377–41.CrossRefGoogle Scholar
Ulrich, B. 1990. Effects of acid deposition on forest ecosystems in Europe. In Advances in Environmental Sciences, ed., Adriano, D. O. New York: Springer-Verlag.Google Scholar
Vitousek, P. M., Gosz, J. R., Grier, C. C., Melillo, J. M., Reiners, W. A. & Todd, R. L. 1979. Nitrate losses from disturbed ecosystems. Science 204, 469–74.CrossRefGoogle ScholarPubMed
Wright, R. F. & Cosby, B. J. 1987. Use of process-oriented model to predict acidification at manipulated catchments in Norway. Atmospheric Environment 21, 727–30.CrossRefGoogle Scholar
Wright, R. F., Harriman, R., Henriksen, A., Morrison, B. & Caines, L. A. 1980. Acid lakes and streams in the Galloway area, southwestern Scotland. In Ecological Impact of Acid Precipitation, pp. 248–9, eds., Drabløs, D. & Tollan, A. Ås-NLH, Norway: SNSF-project.Google Scholar
Wright, R. F., Lotse, E. & Semb, A. 1988. Reversibility of acidification shown by whole-catchment experiments. Nature 334, 670–5.CrossRefGoogle Scholar
Wright, R. F., Cosby, B. J., Flaten, M. B. & Reuss, J. O. 1990. Evaluation of an acidification model with data from manipulated catchments in Norway. Nature 343, 53–5.CrossRefGoogle Scholar
Wright, R. F., Cosby, B. J., Flaten, M. B. & Hornberger, G. M. (in press) A regional model of lake acidification in southernmost Norway. Ambio.Google Scholar