Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:57:46.369Z Has data issue: false hasContentIssue false

Preliminary Comparative Studies on Denitrification and Methane Production in Loch Leven, Kinross, and other Freshwater Lakes

Published online by Cambridge University Press:  05 December 2011

D. W. Johnston
Affiliation:
Department of Microbiology, School of Agriculture, University of Edinburgh, West Mains Road, Edinburgh.
A. J. Holding
Affiliation:
Department of Microbiology, School of Agriculture, University of Edinburgh, West Mains Road, Edinburgh.
J. E. McCluskie
Affiliation:
Department of Microbiology, School of Agriculture, University of Edinburgh, West Mains Road, Edinburgh.
Get access

Synopsis

Data on the evolution of nitrogen gas and methane, and the utilisation of nitrate were obtained from sediment-water interface core samples obtained from Loch Leven, Kinross, and Windermere Esthwaite Water, Coniston Water and Ennerdale Water in the English Lake District. Differences in the rate of evolution and total quantity of the gases are discussed in relation to the trophic state of the lakes. The potential importance of nitrogen gas loss to the nitrogen budget of the lakes is considered.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Allgeier, R. J., Peterson, J., Juday, W. H. and Birge, E. A., 1932. The anaerobic fermentation of lake deposits. Int. Revue Ges. Hydrobiol. Hydrogr., 26, 444461.CrossRefGoogle Scholar
Bailey, L. D. and Beauchamp, E. G., 1971. Nitrate reduction, and redox potentials measured with permanently and temporarily placed platinum electrodes in saturated soils. Can J. Soil Sci., 51, 5158.CrossRefGoogle Scholar
Bandurski, R. S., 1965. Biological reduction of sulphate and nitrate. In Plant Biochemistry, 467488. (Bonner, J. and Varner, J. E., Eds.) New York: Academic Press.CrossRefGoogle Scholar
Bell, R. G., 1969. Studies of the decomposition of organic matter in flooded soil. Soil Biol. Biochem., 1, 112.CrossRefGoogle Scholar
Brezoik, P. L., 1971. Nitrogen: sources and transformations in natural waters. Presented at the American Chemical Society Meetings, Los Angeles, April 1971.Google Scholar
Brezoik, P. L. and Lee, G. F., 1966. Sources of elemental nitrogen in fermentation gases. Int. J. Air Wat. Pollut., 10, 145160.Google Scholar
Brezoik, P. L. and Lee, G. F., 1968. Denitrification as a nitrogen sink in Lake Mendota, Wisconsin. Environ. Sci. Technol., 2, 120125.CrossRefGoogle Scholar
Broadbent, F. E. and Clark, F., 1965. Denitrification. Agronomy U.S. Dept. Agric., 10, 344359.Google Scholar
Cady, F. B. and Bartholomew, W. V., 1960. Sequential products of anaerobic denitrification in Norfolk soil material. Proc. Soil Sci. Soc. Am., 24, 477482.CrossRefGoogle Scholar
Chamroux, M. S., 1965. Contribution a l'etude du pouvoir denitrifiant des sediments marins. Annls Inst. Pasteur, Paris, 109, 424442.Google Scholar
Chen, R. L., Keeney, D. R., Graetz, D. A. and Holding, A. J., 1972. Denitrification and nitrate reduction in Wisconsin lake sediments. J. Envir. Quality, 1, 158162.CrossRefGoogle Scholar
Chen, R. L., Keeney, D. R. and Konrad, J. G., 1972. Nitrification in sediments of selected Wisconsin Lakes. J. Envir. Quality, 1, 151154.CrossRefGoogle Scholar
Chen, R. L., Keeney, D. R., Konrad, J. G., Holding, A. J. and Graetz, D. A., 1972. Gas production in sediments of Lake Mendota, Wisconsin. J. Envir. Quality, 1, 155158.CrossRefGoogle Scholar
Cook, F. D., 1961. The denitrifying bacterial of soil. Ph.D. Thesis. Edinb. Univ.Google Scholar
Cooper, G. S. and Smith, R. L., 1963. Sequence of products formed during denitrification in some diverse Western soils. Proc. Soil Sci. Soc. Am., 27, 659662.CrossRefGoogle Scholar
Domogalla, B. P., Fred, E. B. and Peterson, W. A., 1926. Seasonal variation in the ammonia and nitrate contents of lake waters. J. Am. Wat. Wks Ass., 15, 369385.Google Scholar
Freney, J. R. and Wetselaar, R., 1967. The determination of mineral nitrogen in soil with particular reference to nitrate. Tech. Pap. Div. Pl. Ind. C.S.I.R.O. Aust., 23.Google Scholar
Goering, J. J., 1968. Denitrification in the oxygen minimum layer of the eastern tropical Pacific Ocean. Deep Sea Res., 15, 157164.Google Scholar
Goering, J. J. and Dugdale, V. A., 1966 a. Estimates of the rates of denitrification in a subarctic lake. Limnol. Oceanogr., 11, 113117.CrossRefGoogle Scholar
Goering, J. J. and Dugdale, V. A., 1966 b. Denitrification rates in an island bay in the equatorial Pacific Ocean. Science, N.Y., 154, 505506.CrossRefGoogle Scholar
Harris, R. F. and Sommers, L. E., 1968. Plate-dilution frequency technique for assay of microbial ecology. Appl. Microbiol., 16, 330334.CrossRefGoogle ScholarPubMed
Herbert, R. A. and Holding, A. J., 1972. Rapid separation and estimation of gases produced or utilized by microorganisms. J. Chromat. Sci., 10, 174175.CrossRefGoogle Scholar
Hutchinson, G. E., 1957. A Treatise on Limnology. Vol. 1. Geography, Physics and Chemistry. New York: Wiley.Google Scholar
Jenkin, B. M. and Mortimer, C. H., 1938. Sampling lake deposits. Nature, Lond., 142, 834.CrossRefGoogle Scholar
Keeney, D. R., Chen, R. L. and Graetz, D. A., 1971. Importance of denitrification and nitrate reduction in sediments to the nitrogen budgets of Lakes. Nature, Lond., 233, 6667.CrossRefGoogle Scholar
Keeney, D. R., Herbert, R. A. and Holding, A. J., 1971. Microbial aspects of the pollution of fresh water with inorganic nutrients. In Microbial Aspects of Pollution. (Symp. Ser. Soc. Appl. Bact., 1, 181200. Sykes, G. and Skinner, F. A., Eds) London: Academic Press.CrossRefGoogle Scholar
Keeney, D. R., Konrad, J. G. and Chesters, G., 1970. Nitrogen distribution in some Wisconsin Lake sediments. J. Wat. Pollut. Control Fed., 42, 411417.Google ScholarPubMed
Kluyver, A. J. and Verhoeven, W., 1954. Studies on true dissimilatory nitrate reduction. IT. The mechanism of denitrification. Antonie van Leeuwenhoek, 20, 242262.CrossRefGoogle ScholarPubMed
Kuznetsov, S. I., 1968. Recent studies on the role of microorganisms in the cycling of substances in lakes. Limnol. Oceanogr., 13, 211224.CrossRefGoogle Scholar
Lee, G. F., 1970. Factors affecting the transfer of material between water and sediments. Eutrophication Inf. Progm. Occ. Pap., 1. Water Resources Center, Madison, Wisconsin.Google Scholar
Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. III and IV. J. Ecol., 30, 147201.CrossRefGoogle Scholar
Nicholas, D. J. D., 1963. The metabolism of inorganic nitrogen and its compounds in micro-organisms. Biol. Rev., 38, 530568.CrossRefGoogle Scholar
Owens, M., 1970. Nutrient balances in rivers. Paper presented at Society for Water Treatment and Examination Symposium on Eutrophication, March 1970.Google Scholar
Patrick, W. H., 1960. Nitrate reduction rates in a submerged soil as affected by redox potentials. 7th Int. Congr. Soil Sci., Madison, Wisconsin, 2, 494500.Google Scholar
Pearsall, W. H., 1930. Phytoplankton in the English Lakes. 1. The proportions in the waters of some dissolved substances of biological importance. J. Ecol., 18, 306320.CrossRefGoogle Scholar
Ponnamperuma, F. N., Martinez, E. and Loy, T., 1966. Influence of redox potential and partial pressure of carbon dioxide on pH values and the suspension effect of flooded soil. Soil Sci., 101, 421431.CrossRefGoogle Scholar
Redman, F. H. and Patrick, W. H., 1965. Effect of submergence on several biological and chemical soil properties. Bull La Agric. Exp. Stn, 592.Google Scholar
Reeburgh, W. S., 1969. Observations of gases from Chesapeake Bay sediments. Limnol. Oceanogr., 14, 368375.CrossRefGoogle Scholar
Rickman, R. W., Letey, J., Aubertin, G. M. and Stolzy, L. H., 1968. Platinum microelectrode poisoning factors. Proc. Soil Sci. Soc. Am., 32, 204208.CrossRefGoogle Scholar
Rittenberg, S. C., Emery, K. O. and Orr, W. L., 1955. Regeneration of nutrients in sediments of marine basins. Deep Sea Res., 3, 2345.Google Scholar
Verhoeven, W. and Goos, J. J. C., 1954. Studies on true dissimilatory nitrate reduction. I. Rate of hydrogen donator in bacterial nitrate reduction. Antonie van Leeuwenhoek, 20, 93101.CrossRefGoogle Scholar
Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD Tech. Rep. Wat. Management Res., DAS/CSI 68.27.Google Scholar