Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T13:20:00.016Z Has data issue: false hasContentIssue false

Physiological studies in birch

Published online by Cambridge University Press:  05 December 2011

K. A. Longman
Affiliation:
Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian EH26 OQB
Get access

Synopsis

Aspects of whole-plant physiology of birch are reviewed, and previously unpublished research is presented. Seasonal cycles of shoot growth and bud dormancy are discussed, with environmental and hormonal factors affecting the rate and duration of shoot extension and leaf production. Also covered are variability in branching patterns, aspects of cambial activity, onset of the reproductive phase, factors affecting flowering and sex ratio, and seed viability and dormancy. Finally, the regenerative capacity of birch is described, and its future roles are mentioned.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arshad, N. L. 1980. Studies on endogenous growth substances in relation to flowering in seedlings of Betula pendula Roth. Ph.D. Thesis, University of Wales, Aberystwyth.Google Scholar
Black, M. and Wareing, P. F. 1955. Growth studies in woody species. VII. Photoperiodic control of germination in Betula pubescens Ehrh. Physiologia PI. 8, 300316.CrossRefGoogle Scholar
Brian, P. W., Petty, J. H. P. and Richmond, P. T. 1959a. Effects of gibberellic acid on development of autumn colours and leaf-fall of deciduous woody plants. Nature, Lond. 183, 5859.Google Scholar
Brian, P. W., Petty, J. H. P. and Richmond, P. T. 1959b. Extended dormancy of deciduous woody plants treated in autumn with gibberellic acid. Nature, Lond. 184, 69.Google Scholar
Brinkman, K. A. 1974. Betula L. Birch. In: Seeds of Woody Plants in the United States, ed. Schopmeyer, C. S. USDA Agric. Handbk 450, 252–257.Google Scholar
Cameron, A. D. and Matthews, J. D. 1982. Rapid vegetative propagation of silver birch and Scots pine by tissue culture. Rep. Forest. Res. Lond. 1982, 51–52.Google Scholar
Chalupa, V. 1965. Influence of the reduction of leaves on the beginning and course of radial growth. Commun. Inst. For. Czechoslovakia 4, 6173.Google Scholar
Champagnat, P. 1954. Recherches sur les rameaux anticipées des végétaux ligneux. Revue Cytol. Biol. Vég. 15, 151.Google Scholar
Clausen, K. E. 1970. Germination of yellow and paper birch seeds after eight years storage. U.S. For. Serv. Nth Cent. For. Exp. Stn Res. Note NC–87.Google Scholar
Danilov, M. D. 1954. Twenty-four hour cycle in the shoot growth of some tree and shrub species. Dokl. Akad. Nauk SSSR 96, 205208.Google Scholar
Darrall, N. M. and Wareing, P. F. 1981. The effect of nitrogen nutrition on cytokinin activity and free amino acids in Betula pendula Roth, and Acer pseudoplatanus L. J. Exp. Bot. 32, 369379.Google Scholar
Downs, R. J. and Bevington, J. M. 1981. Effect of temperature and photoperiod on growth and dormancy of Betula papyrifera. Am. J. Bot. 68, 795800.Google Scholar
Eagles, C. F. and Wareing, P. F. 1964. The role of growth substances in the regulation of bud dormancy. Physiologia Pl. 17, 697709.Google Scholar
Good, J. E. G. 1974. Naturally-occurring growth regulators in leaf washings of Picea sitchensis (Bong.) Carr and Betula pendula Roth. Planta 116, 4554.Google Scholar
Gordon, J. C. 1969. Effect of shade on photosynthesis and dry weight distribution in Yellow Birch (Betula alleghaniensis Britton) seedlings. Ecology 50, 924927.Google Scholar
Gross, H. L. 1972. Crown deterioration and reduced growth associated with excessive seed production by birch. Can. J. Bot. 50, 24312437.Google Scholar
Håbjørg, A. 1972a. Effects of photoperiod and temperature on growth and development of three latitudinal and three altitudinal populations of Betula pubescens Ehrh. Meld. Norg. LandbrHøgsk. 51(2), 127.Google Scholar
Håbjørg, A. 1972b. Effects of light quality, light intensity and night temperature on growth and development of three latitudinal populations of Betula pubescens Ehrh. Meld. Norg. LandbrHøgsk. 51(26), 117.Google Scholar
Harrison, M. A. and Saunders, P. F. 1975. The abscisic acid content of dormant birch buds. Planta 123, 291298.Google Scholar
Huhtinen, O. 1976. Early flowering of birch and its maintenance in plants regenerated through tissue cultures. Acta Hort. 56, 243249.Google Scholar
Huhtinen, O. and Yahyaoglu, Z. 1974. Das frühe Blühen von aus Kalluskulturen herangezogenen Pflänzchen bei der Birke Betula pendula Roth. Silvae Genet. 23, 3234.Google Scholar
Johnsson, H. 1949. Hereditary precocious flowering in Betula verrucosa and Betula pubescens. Hereditas, Lund 35, 112114.Google Scholar
Junttila, O. 1970. Effects of stratification, gibberellic acid and germination temperature on the germination of Betula nana. Physiologia Pl. 23, 425433.CrossRefGoogle Scholar
Junttila, O. 1976. Effects of red and far-red irradiation on seed germination in Betula verrucosa and Betula pubescens. Z. PflPhysiol. 80, 426435.Google Scholar
Junttila, O. 1980. Effects of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiologia Pl. 48, 347352.Google Scholar
Kawase, M. 1961. Dormancy in Betula as a quantitative state. Pl. Physiol. 36, 643649.CrossRefGoogle ScholarPubMed
Kessler, K. J. 1969. Top dying of yellow birch associated with seed production. Pl Dis. Reptr 53 (9), 694697.Google Scholar
Kouwe, F. A. 1973. Effects of hormones and bark ringing on flower initiation and vegetative growth in Thuja and Betula. Unpublished report, Institute of Terrestrial Ecology, Edinburgh.Google Scholar
Kozlowski, T. T. and Clausen, J. J. 1966. Shoot growth characteristics of heterophyllous woody plants. Can. J. Bot. 44, 827843.Google Scholar
Kozlowski, T. T. and Cooley, J. H. 1960. Natural root graftings in forest trees. Wis. Coll. Agric, For. Res. Note 56.Google Scholar
Kozlowski, T. T. and Ward, R. C. 1961. Shoot elongation characteristics of forest trees. Forest Sci. 7, 357368.Google Scholar
Krisek, D. T. and Zimmerman, R. H. 1973. Comparative growth of birch seedlings grown in the greenhouse and growth chamber. J. Am. Soc. Hort. Sci. 98, 370373.Google Scholar
Ladefoged, K. 1952. The periodicity of wood formation. Biol. Skr. 7 (3), 198.Google Scholar
Ladipo, D.O. 1981. Branching patterns of the tropical hardwood Triplochiton scleroxylon K. Schum. with special reference to the selection of superior clones at an early age. Ph.D. thesis, University of Edinburgh.Google Scholar
Larsen, P. R. 1958. Effect of gibberellic acid on forcing hardwood cuttings for pollen collection. U.S. For. Serv. Lake States For. Exp. Stn Tech. Note 538.Google Scholar
Last, F. T. 1975. Some aspects of the genecology of trees. Rep. E. Mailing Res. Stn 1974, pp. 25–40.Google Scholar
Leakey, R. R. B., Last, F. T. and Longman, K. A. 1982. Domestication of tropical trees: an approach securing future productivity and diversity in managed ecosystems. Commonw. Forest Rev. 61, 3342.Google Scholar
Lenton, J. R., Perry, V. M. and Saunders, P. F. 1972. Endogenous abscisic acid in relation to photoperiodically induced bud dormancy. Planta 106, 1322.Google Scholar
Lepistö, M. 1973. Accelerated birch breeding—in plastic greenhouses. For. Chron. 49, 172173.Google Scholar
Lohwag, H. 1910. Beitrag zur Kenntnis der Zeit der ersten Blütenanlage bei Holzpflanzen. Öst. Bot. Z. 60, 369376.Google Scholar
Longman, K. A. 1960. Problems of the physiology of flowering in forest trees. Ph.D. Thesis, University of Manchester.Google Scholar
Longman, K. A. 1975. Tree biology research and plant propagation. Comb. Proc. Int. Pl. Propagators' Soc. 25, 219236.Google Scholar
Longman, K. A. 1976. Some experimental approaches to the problem of phase-change in forest trees. Acta Hon. 56, 8190.Google Scholar
Longman, K. A. and Coutts, M. P. 1974. Physiology of the Oak tree. In The British Oak, ed. Morris, M. G. and Perring, F. H., pp. 194221. Faringdon, Berks.: Botanical Society of the British Isles/E. W. Classey.Google Scholar
Longman, K. A., Nasr, T. A. A. and Wareing, P. F. 1965. Gravimorphism in trees. IV. The effect of gravity of flowering. Ann. Bot. 29, 459473.Google Scholar
Longman, K. A. and Wareing, P. F. 1959. Early induction of flowering in birch seedlings. Nature, Lond. 184, 20372038.CrossRefGoogle Scholar
Marquis, D. A. 1975. Seed storage and germination under northern hardwood forests. Can. J. For. Res. 5, 478484.Google Scholar
Mazalewski, R. L. and Hackett., W. P. 1979. Cutting propagation of Eucalyptus ficifolia using cytokinin-induced basal trunk shoots. Comb. Proc. Int. Pl. Propagators' Soc. 29, 118125.Google Scholar
Nagata, H., Hanafusa, T., Hayashi, Y. and Satoo, T. 1968. Studies on the photoperiodism in forest trees. IX. Effect of thermoperiod and prechilling on the germination of Betula maximowicziana in complete darkness. Bull. Hokkaido For. Exp. Stn 6, 5055.Google Scholar
Nitsch, J. P. 1957. Photoperiodism in woody plants. Proc. Am. Soc. Hort. Sci. 70, 526544.Google Scholar
Pauley, S. S. 1948. Budding as a silvicultural technique. J. For. 46, 524525.Google Scholar
Pelham, J., Kinnaird, J. W., Gardiner, A. S. and Last, F. T. 1984. Variation in, and reproductive capacity of, Betula pendula and B. pubescens. Proc. Roy. Soc. Edinb. 85B, 2741.Google Scholar
Pelham, J. and Mason, P. A. 1978. Aseptic cultivation of sapling trees for studies of nutrient responses, with particular reference to phosphate. Ann. Appl. Biol. 88, 415419.Google Scholar
Pollard, D. F. W. and Logan, K. T. 1974. The role of free growth in the differentiation of provenances of black spruce Picea mariana (Mill.) B.S.P. Can. J. For. Res. 4, 308311.Google Scholar
Powell, L. E. 1976. Effect of photoperiod on endogenous abscisic acid in Malus and Betula. Hortscience 11, 498499.Google Scholar
Robinson, L. W. and Wareing, P. F. 1969. Experiments on the juvenile-adult phase change in some woody species. New Phytol. 68, 6778.Google Scholar
Ryabchuk, V. P. 1977. Centralized collection of the sap of broadleaved species (birch). Lesnoĭ Zh. 1977, No. 1; 140–142.Google Scholar
Safford, L. O. 1976. Seasonal variation in the growth and nutrient content of Yellow-Birch replacement roots. Pl. Soil. 44, 439444.Google Scholar
Sinko, M. 1973. An experiment on the storing of birch seeds for five years. Sver. Skogsvärdsförbunds Tidskr. 71, 8387.Google Scholar
Smith, H. and Wareing, P. F. 1966. Apical dominance and the effect of gravity on nutrient distribution. Planta 70, 8794.Google Scholar
Srivastava, P. S. and Steinhauer, A. 1981. Regeneration of birch plants from catkin tissue cultures. Pl. Sci. Lett. 22, 379386.Google Scholar
Stern, K. 1961. Über den Erfolg einer über drei Generationen geführten Auslese auf frühes Bliihen bei Betula verrucosa. Silvae Genet. 10, 4851.Google Scholar
Stoutjesdijk, P. H. 1972. Spectral transmission curves of some types of leaf canopies with a note on seed germination. Acta Bot. Need. 21, 185191.Google Scholar
Sundvor, T. 1956. Studies on the date in autumn when diameter increment of deciduous trees in Vestland ceases. Blyttia 14, 122125.Google Scholar
Suszka, B. 1979a. Generative propagation. In Birch-Betula L., ed. Bialobok, S., pp. 149198. Warsaw-Poznán: Inst, of Dendrology, Polish Academy of Scienre.Google Scholar
Suszka, B. 1979b. Vegetative propagation. In Birch-Betula L., ed. Bialobok, S., pp. 199218. Warsaw-Poznán: Inst. of Dendrology, Polish Academy of Science.Google Scholar
Thompson, K., Grime, J. P. and Mason, G. 1977. Seed germination in response to diurnal fluctuations of temperature. Nature, Lond. 267, 147149.Google Scholar
Tolstopyatenko, A. I. 1974. Bisexual inflorescences in Betula spp. Bot. Zh. 59, 18341844.Google Scholar
Toole, V. K. 1973. Effects of light, temperature and their interactions on the germination of seeds. Seed Sci. Technol. 1, 339396.Google Scholar
Tubbs, C. H. 1976. Effects of sugar maple root exudate on seedlings of northern conifer species. USDA Forest Serv. Res. Note NC 213.Google Scholar
Vaartaja, O. 1956. Photoperiodic response in germination of seeds of certain trees. Can. J. Bot. 34, 377388.Google Scholar
Villiers, T. A. 1961. Dormancy in tree seeds. Proc. Int. Seed Testing Ass. 26, 516536.Google Scholar
Wang, C. and Perry, T. O. 1958. The ecotypic variation of dormancy, chilling and photoperiodic response in Betula species. 10th Int. Congr. Genet. Montreal, Proc. 2, 307 (Abstr.).Google Scholar
Wareing, P. F. 1949. Photoperiodism in woody species. Forestry 22, 211222.Google Scholar
Wareing, P. F. 1956. Photoperiodism in woody plants. A. Rev. Pl. Physiol. 7, 191214.Google Scholar
Wareing, P. F. 1958. The physiology of cambial activity. J. Inst. Wood Sci. 1, 3442.Google Scholar
Wareing, P. F. 1959. Problems of juvenility and flowering in trees. J. Linn. Soc. (Bot.) 56, 282289.Google Scholar
Wareing, P. F. 1965. Endogenous inhibitors in seed germination and dormancy. Encycl. Pl. Physiol. 15(2), 909924.Google Scholar
Wareing, P. F. 1966. The physiologist's approach to tree growth. Forestry (Suppl.) 7–18.Google Scholar
Wareing, P. F. 1968. The physiology of the whole tree. Rep. E. Mailing Res. Stn 1967, pp. 5568.Google Scholar
Wilson, B. F. 1970. The Growing Tree. Amherst, USA: Univ. of Massachusetts Press.Google Scholar
Zimmermann, M. H. and Brown, C. L. 1971. Trees: Structure and Function. New York: Springer.Google Scholar
Žumer, M. 1969. Growth rhythm of some forest trees at different altitudes. Meld. Norg. LandbrHøgsk. 48(5), 131.Google Scholar