Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T02:24:29.369Z Has data issue: false hasContentIssue false

Photosynthesis, foliage development and productivity of Sitka spruce

Published online by Cambridge University Press:  05 December 2011

M. G. R. Cannell
Affiliation:
Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian EH26 OQB, Scotland, U.K.
Get access

Synopsis

Young Sitka spruce trees grow slowly, compared with poplar for instance, because of lower photosynthetic rates and slower rates of leaf area production. On the other hand, the canopies of Sitka spruce stands have structural and photosynthetic properties which make them very productive. Both the slow growth of young trees, and the high productivities of closed stands, can be attributed to the needle habit.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baxter, S. M. & Cannell, M. G. R. 1978. Branch development on leaders of Picea sitchensis. Canadian Journal of Forest Research 8, 121128.CrossRefGoogle Scholar
Beadle, C. L., Talbot, H. & Jarvis, P. G. 1982. Canopy structure and leaf area index in a mature Scots pine forest. Forestry 55, 105123.Google Scholar
Beadle, C. L., Hart, J. W. & Jarvis, P. G. 1983. The extraction and activity of carboxylases in Sitka spruce and some other conifers. Photosynthetica 17, 321333.Google Scholar
Berg, A. R. & Cutter, E. G. 1969. Leaf initiation rates and volume growth rates in the shoot apex of Chrysanthemum. American Journal of Botany 56, 153156.CrossRefGoogle Scholar
Bradbury, I. K. & Malcolm, D. C. 1978. Dry matter accumulation by Picea sitchensis seedlings during winter. Canadian Journal of Forest Research 8, 207213.CrossRefGoogle Scholar
Cannell, M. G. R. 1974. Production of branches and foliage by young trees of Pinus contorta and Picea sitchensis; provenance differences and their simulation. Journal of Applied Ecology 11, 10911115.CrossRefGoogle Scholar
Cannell, M. G. R. 1976. Shoot apical growth and cataphyll initiation rates in provenances of Pinus contorta in Scotland. Canadian Journal of Forest Research 6, 539556.CrossRefGoogle Scholar
Cannell, M. G. R. 1978. Analysis of shoot apical growth of Picea sitchensis seedlings. Annals of Botany 42, 12911303.CrossRefGoogle Scholar
Cannell, M. G. R. 1980. Productivity of closely-spaced young poplar on agricultural soils in Britain. Forestry 53, 121.CrossRefGoogle Scholar
Cannell, M. G. R. 1982. World forest biomass and primary production data. London: Academic Press.Google Scholar
Cannell, M. G. R. & Bowler, K. C. 1978. Spatial arrangement of lateral buds at the time that they form on leaders of Picea and Larix. Canadian Journal of Forest Research 8, 129137.CrossRefGoogle Scholar
Cannell, M. G. R. & Cahalan, C. M. 1979. Shoot apical meristems of Picea sitchensis seedlings accelerate in growth following bud-set. Annals of Botany 44, 209214.CrossRefGoogle Scholar
Cannell, M. G. R. & Sheppard, L. J. 1982. Seasonal changes in frost hardiness of provenances of Picea sitchensis in Scotland. Forestry 55, 137153.CrossRefGoogle Scholar
Cannell, M. G. R. & Willett, S. C. 1975. Rates and times at which needles are initiated in buds on differing provenances of Pinus controta and Picea sitchensis in Scotland. Canadian Journal of Forest Research 5, 367380.CrossRefGoogle Scholar
Cannell, M. G. R. & Willett, S. C. 1976. Shoot growth phenology, dry matter distribution and root:shoot ratios of provenances of Populus trichocarpa, Picea sitchensis and Pinus contorta growing in Scotland. Sivae Genetica 25, 4959.Google Scholar
Cannell, M. G. R., Thompson, S. & Lines, R. 1976. An analysis of inherent differences in shoot growth within some north temperate conifers. In Tree physiology and yield improvement, eds. Cannell, M. G. R. & Last, F. T., pp. 173205. London: Academic Press.Google Scholar
Cannell, M. G. R., Sheppard, L. J., Ford, E. D. & Wilson, R. H. F. 1983. Clonal differences in dry matter distribution, wood specific gravity and foliage “efficiency” in Picea sitchensis and Pinus contorta. Silvae Genetica 32, 195202.Google Scholar
Christie, J. M. & Lines, R. 1979. A comparison of forest productivity in Britain and Europe in relation to climatic factors. Forest Ecology and Management 2, 75102.CrossRefGoogle Scholar
Cooper, J. P. 1970. Potential production and energy conversion in temperate and tropical grasses. Herbage Abstracts 40, 115.Google Scholar
Cornic, G. & Jarvis, P. G. 1972. Effects of oxygen on CO2 exchange and stomatal resistance in Sitka spruce and maize at low irradiances. Photosynthetica 6, 225239.Google Scholar
Denne, M. P. 1966a. Morphological changes in the shoot apex of Trifolium repens. I. Changes in the vegetative apex during the plastochron. New Zealand Journal of Botany 4, 300314.CrossRefGoogle Scholar
Denne, M. P. 1966b. Diurnal and plastochronal changes in the shoot apex of Tradescantia fluminensis Veil. New Zealand Journal of Botany 4, 444454.CrossRefGoogle Scholar
Emmingham, W. H. & Waring, R. H. 1977. An index of photosynthesis for comparing forest sites in western Oregon. Canadian Journal of Forest Research 7, 165174.CrossRefGoogle Scholar
Evans, L. S. & Berg, A. R. 1971. Leaf and apical growth characteristics in Triticum. American Journal of Botany 58, 540543.CrossRefGoogle Scholar
Ford, E. D. 1982. High productivity in a polestage Sitka spruce stand and its relation to canopy structure. Forestry 55, 117.CrossRefGoogle Scholar
Ford, E. D. & Newbould, P. J. 1970. Stand structure and dry weight production through the sweet chestnut (Castanea saliva Mill.) coppice cycle. Journal of Ecology 58, 275296.CrossRefGoogle Scholar
Gibbon, D., Holliday, R., Mattei, F. & Luppi, G. 1970. Crop production potential and energy conversion efficiency in different environments. Expl Agric. 6, 197204.CrossRefGoogle Scholar
Gregory, R. A. & Romberger, J. A. 1972a. The shoot apical ontogeny of the Picea abies seedling. I. Anatomy, apical dome diameter, and plastochron duration. American Journal of Botany 59, 587597.CrossRefGoogle Scholar
Gregory, R. A. & Romberger, J. A. 1972b. The shoot apical ontogeny of the Picea abies seedling. II. Growth rates. American Journal of Botany 59, 598606.CrossRefGoogle Scholar
Jarvis, P. G. 1981. Production efficiency of coniferous forests in the UK. In Physiological processes limiting plant productivity, ed. Johnson, C. B., pp. 88107. London: Butterworth.Google Scholar
Jarvis, P. G. 1985. Transpiration and assimilation of tree and agricultural crops: the “omega factor”. In Trees as crop plants, eds. Cannell, M. G. R. & Jackson, J. E., pp. 460480. Monks Wood, Abbots Ripton: Institute of Terrestrial Ecology.Google Scholar
Jarvis, P. G. & Leverenz, J. W. 1983. Productivity of temperate, deciduous and evergreen forests. In Encyclopedia of plant physiology. New Series. Vol. 12D. Physiological Plant Ecology. IV, ed. Lange, O. L., Nobel, P. S., Osmond, C. B., & Ziegler, H., pp. 233280. Berlin: Springer-Verlag.Google Scholar
Jarvis, P. G. & Sandford, A. P. 1986. Temperate forests. In Photosynthesis in contrasting environments, eds. Baker, N. R. & Long, S. P. (in press). Amsterdam: Elsevier Science Publishers.Google Scholar
Jarvis, P. G., James, G. B. & Landsberg, J. J. 1976. Coniferous forest. In Vegetation and the atmosphere. Vol. 2, ed. Monteith, J. L., pp. 171240. London: Academic Press.Google Scholar
Jarvis, P. G., Miranda, H. S. & Muetzelfeldt, R. I. 1985. Modelling canopy exchanges of water vapor and carbon dioxide in coniferous forest plantations. In The forest-atmosphere interaction, eds. Hutchison, B. A. & Hicks, B. B., pp. 521542. New York: D. Reidel Publishing Co.CrossRefGoogle Scholar
Krueger, K. W. & Ruth, R. H. 1969. Comparative photosynthesis of red alder, Douglas fir, Sitka spruce and western hemlock seedlings. Canadian Journal of Botany 47, 519527.CrossRefGoogle Scholar
Leverenz, J. W. & Jarvis, P. G. 1979. Photosynthesis in Sitka spruce. VIII. The effects of light flux density and direction on the rate of net photosynthesis and stomatal conductance of needles. Journal of Applied Ecology 16, 919932.CrossRefGoogle Scholar
Leverenz, J. W. & Jarvis, P. G. 1980. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). IX. The relative contribution made by needles at various positions on the shoot. Journal of Applied Ecology 17, 5968.CrossRefGoogle Scholar
Leverenz, J. W., Deans, J. D., Ford, E. D., Jarvis, P. G., Milne, R. & Whitehead, D. 1982. Systematic spatial variation of stomatal conductance in a Sitka spruce plantation. Journal of Applied Ecology 19, 835851.CrossRefGoogle Scholar
Lewandowska, M. & Jarvis, P. G. 1978. Quantum requirements of photosynthetic electron transport in Sitka spruce from different light environments. Physiologia Plantarum 42, 277282.CrossRefGoogle Scholar
Lewandowska, M., Hart, J. W. & Jarvis, P. G. 1976. Photosynthetic electron transport in plants of Sitka spruce subjected to differing light environments during growth. Physiologia Plantarum 37, 269274.CrossRefGoogle Scholar
Lewandowska, M., Hart, J. W. & Jarvis, P. G. 1977. Photosynthetic electron transport in shoots of Sitka spruce from different levels in a forest canopy. Physiologia Plantarum 41, 124128.CrossRefGoogle Scholar
Ludlow, M. M. & Jarvis, P. G. 1971. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) I. General characteristics. Journal of Applied Ecology 8, 925953.CrossRefGoogle Scholar
Lyndon, R. F. 1968. Changes in volume and cell number in the different regions of the shoot apex of Pisum during a single plastochron. Annals of Botany 32, 371390.CrossRefGoogle Scholar
Lyndon, R. F. 1977. Interacting processes in the vegetative development and in the transition to flowering at the shoot apex. In Integration of activity in the higher plant, ed. Jennings, D. H., pp. 221250. London: Cambridge University Press.Google Scholar
Lyndon, R. F. 1979. A modification of flowering and phyllotaxis in Silene. Annals of Botany 43, 553558.CrossRefGoogle Scholar
Michael, D. A., Dickmann, D. I., Gottschalk, K. W., Nelson, N. D. & Isebrands, J. G. 1985. Determining photosynthesis of tree leaves in the field using a portable 14CO2 apparatus: procedures and problems. Photosynthetica 19, 98108.Google Scholar
Miller, H. G. & Miller, J. D. 1976. Effect of nitrogen supply on net primary production in Corsican pine. Journal of Applied Ecology 13, 249256.CrossRefGoogle Scholar
Neilson, R. E. 1977. A technique for measuring photosynthesis in conifers by 14CO2 uptake. Photosynthetica 11, 241250.Google Scholar
Neilson, R. E. & Jarvis, P. G. 1975. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) VI. Response of stomata to temperature. Journal of Applied Ecology 12, 879891.CrossRefGoogle Scholar
Neilson, R. E., Ludlow, M. M. and Jarvis, P. G. 1972. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) II. Response to temperature. Journal of Applied Ecology 9, 721745.CrossRefGoogle Scholar
Nelson, N. D. 1984. Woody plants are not inherently low in photosynthetic capacity. Photosynthetica 18, 600605.Google Scholar
Norman, J. M. & Jarvis, P. G. 1974. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) III. Measurement of canopy structure and interception of radiation. Journal of Applied Ecology 11, 375398.CrossRefGoogle Scholar
Ovington, J. D. 1957. Dry matter production of Pinus sylvestris L. Annals of Botany 21, 287316.CrossRefGoogle Scholar
Ovington, J. D. & Madgwick, H. A. I. 1959. The growth and composition of natural stands of birch. I. Dry matter production. Plant and Soil 10, 271283.CrossRefGoogle Scholar
Owens, J. N. & Molder, M. 1976. Bud development in Sitka spruce. I. Annual growth cycle of vegetative buds and shoots. Canadian Journal of Botany 54, 313325.CrossRefGoogle Scholar
Powell, G. R. 1974. Initiation and development of lateral buds in Abies balsamea. Canadian Journal of Forest Research 4, 458469.CrossRefGoogle Scholar
Richards, F. J. 1951. Phyllotaxis: its quantitative expression and relation to growth in the apex. Philosophical Transactions of the Royal Society of London B235, 509564.Google Scholar
Romberger, J. A. & Gregory, R. A. 1977. The shoot apical ontogeny of the Picea abies seedlings. III. Some age–related aspects of morphogenesis. American Journal of Botany 64, 622630.Google Scholar
Szaniawski, R. K. & Wierzbicki, B. 1978. Net photosynthetic rate of some coniferous species at diffuse high irradiance. Photosynthetica 12, 412417.Google Scholar
Turner, N. C. & Jarvis, P. G. 1975. Photosynthesis in Sitka spruce (Picea sichensis (Bong.) Carr.) IV. Response to soil temperature. Journal of Applied Ecology 12, 561576.CrossRefGoogle Scholar
Watson, D. J. 1971. Size, structure and activity of the production system of crops. In Potential crop production, eds. Wareing, P. F. & Cooper, J. P., pp. 7688. London: Heinemann.Google Scholar
Watts, W. R. & Neilson, R. E. 1977. Photosynthesis in Sitka spruce (Picea sitchensis (Bong. Carr.) VIII. Measurements of stomatal conductance and CO2 uptake in controlled environments. Journal of Applied Ecology 15, 245255.CrossRefGoogle Scholar
Watts, W. R., Neilson, R. E. & Jarvis, P. G. 1976. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) VII Measurements of stomatal conductance and 14CO2 uptake in a forest canopy. Journal of Applied Ecology 13, 623638.CrossRefGoogle Scholar
Williams, R. F. 1974. The shoot apex. London: Cambridge University Press.Google Scholar
Zelawski, W., Szaniawaki, R., Dybczynsky, W. & Piechurowksi, A. 1973. Photosynthetic capacity of conifers in diffuse light of high illuminance. Photosynthetica 7, 351357.Google Scholar