Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:27:04.313Z Has data issue: false hasContentIssue false

Parallels in the development of post-fire fungal and herb communities

Published online by Cambridge University Press:  05 December 2011

D. T. Wicklow
Affiliation:
USDA, ARS, Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A.
Get access

Synopsis

The evolutionary significance of natural fire disturbance regimes in the development of post-fire fungal and herb communities is examined. Before a fire the soil microflora exhibits a general fungistasis, microbial competition is great, nutrients are limiting, and carbonicolous ascomycetes are in a dormant phase. Also in mature chaparral shrub communities the soil microflora is implicated in soil toxicity that prevents seeds of some species from germinating in the interval between burns. Fire results in the deposition of ash and charred wood, a release of nutrients, the elimination of competitors (e.g. shrub cover, soil microflora), an increase in soil alkalinity, the removal of soil toxicity/fungistasis, and cues the germination of constitutively dormant ascospores and seeds. The cue for germination of the chaparral fire annuals appears to be components of the hemicellulose fraction, produced during the charring of wood, but this fraction has not been tested for its ability to cue ascospore germination. Germination in the absence of fire would be “suicidal” because neither the carbonicolous ascomycetes nor the post-fire annuals are able to compete successfully in these pre-burn habitats. The frequency of burning and the uneven heating of the soil surface creates patchiness with a corresponding increase in the species richness of the post-burn community.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlgren, I. F. & Ahlgren, C. E. 1965. Effects of prescribed burning on soil microorganisms in a Minnesota jack pine forest. Ecology 46, 304310.CrossRefGoogle Scholar
Albersheim, P. & Darvill, A. G. 1985. Oligosaccharins. Scientific American 253(9), 5873.CrossRefGoogle Scholar
Baker, H. G. 1974. The evolution of weeds. Annual Review of Ecology and Systematics 5, 124.CrossRefGoogle Scholar
Chou, C. H. & Muller, C. H. 1972. Allelopathic mechanisms of Arctostaphylos glandulosa var. zacaensis. American Midland Naturalist 88, 324347.CrossRefGoogle Scholar
Christensen, N. L. 1985. Shrubland fire regimes and their evolutionary consequences. In The Ecology of Natural Disturbance and Patch Dynamics, eds. Pickett, S. T. A. & White, P. S., pp. 85100. New York: Academic Press.Google Scholar
Christensen, N. L. & Muller, C. H. 1975a. Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecological monographs 45, 2955.CrossRefGoogle Scholar
Christensen, N. L. & Muller, C. H. 1975b. Relative importance of factors controlling germination and seedling survival in Adenostoma chaparral. American Midland Naturalist 93, 7178.CrossRefGoogle Scholar
Denslow, J. S. 1980. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 1821.CrossRefGoogle ScholarPubMed
Denslow, J. S. 1985. Disturbance-mediated coexistence of species. In The ecology of natural disturbance and patch dynamics, eds. Pickett, S. T. A. & White, P. S., pp. 307323. New York: Academic Press.Google Scholar
Dunn, P. H., DeBano, L. F. & Eberlein, G. E. 1979. Effects of burning on chaparral soils. II. Soil microbes and nitrogen mineralization. Soil Science Society of America Journal 43, 509514.CrossRefGoogle Scholar
Egger, K. N. 1986. Substrate hydrolysis patterns of post-fire Ascomycetes (Pezizales). Mycologia 78, 771780.CrossRefGoogle Scholar
Egger, K. N. & Paden, J. W. 1986a. Pathogenicity of post-fire Ascomycetes (Pezizales) on seeds and germinants of lodgepole pine. Canadian Journal of Botany 64, 23682371.CrossRefGoogle Scholar
Egger, K. N. & Paden, J. W. 1986b. Biotrophic associations between lodgepole pine seedlings and post fire Ascomycetes (Pezizales) in monoxenic culture. Canadian Journal of Botany 64, 27192725.CrossRefGoogle Scholar
El-Abyad, M. S. H. & Webster, J. 1968a. Studies on pyrophilous discomycetes: I. Comparative physiological studies. Transactions of the British Mycologial Society 51, 353367.CrossRefGoogle Scholar
El-Abyad, M. S. H. & Webster, J. 1968b. Studies on pyrophilous discomycetes: II. Competition. Transactions of the British Mycological Society 51, 369375.CrossRefGoogle Scholar
Garrett, S. D. 1970. Pathogenic root-infecting fungi. London: Cambridge University Press.Google Scholar
Gochenauer, S. E. 1981. Responses of soil fungal communities to disturbance. In The fungal community: its organization and role in the ecosystem, eds. Wicklow, D. T. & Carroll, G. C., pp. 459479. New York: Marcel Dekker.Google Scholar
Hadley, E. B. 1961. Influence of temperature and other factors on Ceanothus agecarpus seed germination. Madrono 16, 132138.Google Scholar
Herman, R. P. & Kucera, C. L. 1979. Microbial floristics of a managed tallgrass prairie. American Midland Naturalist 101, 1320.CrossRefGoogle Scholar
Horn, H. S. 1976. Succession. In Theoretical Ecology, ed. May, R. M., pp. 187204. Philadelphia: Saunders.Google Scholar
Jorgenson, J. R. & Hodges, C. S. Jr. 1970. Microbial characteristics of a forest soil after twenty years of prescribed burning. Mycologia 62, 721726.CrossRefGoogle Scholar
Kaminsky, R. 1981. The microbial origin of the allelopathic potential of Adenostoma fasiculatum H. & A. Ecological Monographs 51, 361382.CrossRefGoogle Scholar
Keeley, J. E. & Nitzberg, M. E. 1984. Role of charred wood in the germination of the chaparral herbs Emmenanthe penduliflora (Hydrophyllaceae) and Eriophyllum conferliflorum (Asteraceae). Madrono 31, 208218.Google Scholar
Keeley, J. E., Morton, B. A., Pedrosa, A. & Trotter, P. 1985. The role of allelopathy, heat, and charred wood in the germination of chaparral herbs and suffrutescents. Journal of Ecology 73, 445458.CrossRefGoogle Scholar
Keeley, J. E. & Pizzorno, M. 1986. Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. American Journal of Botany 73, 12891297.Google Scholar
Levin, D.A. & Paine, R. T., 1974. Disturbance, patch formation, and community structure. Proceedings of the National Academy of Science U.S.A. 71, 27442747.CrossRefGoogle ScholarPubMed
Lingappa, B. T. & Lockwood, J. L. 1963. Direct assay of soils for fungistasis. Phytopathology 53, 529531.Google Scholar
Lockwood, J. S. 1977. Fungistasis in soils. Biological Review 52, 143.CrossRefGoogle Scholar
Loucks, O. L., Plumb-Mentjes, M. L. & Rogers, D. 1985. Gap processes and large-scale disturbances in sand prairies. In The Ecology of Natural Disturbance and Patch Dynamics, eds. Pickett, S. T. A. & White, P. S., pp. 7183. New York: Academic Press.Google Scholar
Lussenhop, J. 1981. Microbial and microarthropod detrital processing in a prairie soil. Ecology 62, 964972.CrossRefGoogle Scholar
Lussenhop, J. & Wicklow, D. T. 1984. Changes in spatial distribution of fungal propagules associated with invertebrate activity in soil. Soil Biology and Biochemistry 16, 601604.CrossRefGoogle Scholar
Mahoney, D. P. & LaFavre, J. S. 1981. Coniochaeta extramundana, with a synopsis of other Coniochaeta species. Mycologia 73, 931952.CrossRefGoogle Scholar
Margalef, R. 1968. Perspectives in Ecological Theory. Chicago: University of Chicago Press.Google Scholar
McPherson, J. K. & Muller, C. H. 1969. Allelopathic effects of Adenostoma fasiculatum, “Chamise” in the California chaparral. Ecological Monographs 39, 177198.CrossRefGoogle Scholar
McPherson, J. K., Chou, C. H. & Muller, C. H. 1971. Allelopathic constituents of the chaparral shrub Adenostoma fasciculatum. Phytochemistry 18, 29252933.CrossRefGoogle Scholar
Meiklejohn, J. 1955. The effect of bush burning on the microflora of a Kenya upland soil. Journal of Soil Science 6, 111118.CrossRefGoogle Scholar
Moldenke, A. R. 1976. California pollination ecology and vegetation types. Phytologia 34, 305361.Google Scholar
Muller, C. H. & del Moral, R. 1966. Soil toxicity induced by terpenes from Salvia leucophylla. Bulletin of The Torrey Botanical Club 93, 130137.CrossRefGoogle Scholar
Muller, C. H., Hanawalt, R. B. & McPherson, J. K. 1968. Allelopathic control of herb growth in the fire cycle of the California chaparral. Bulletin of The Torrey Botanical Club 95, 225231.CrossRefGoogle Scholar
Pack, P. E. 1985. The interaction of microbial toxins and charate in the germination of chaparral herb seeds. M.A. Thesis, Occidental College, Los Angeles, California.Google Scholar
Perkins, D. D., Turner, B. C. & Barry, E. G. 1976. Strains of Neurospora collected from nature. Evolution 30, 281313.CrossRefGoogle ScholarPubMed
Peterson, P. M. 1970. Danish fireplace fungi: an ecological investigation on burns. Dansk Botanisk Arkiv 27, 197.Google Scholar
Pickett, S. T. A. & White, P. S. 1985. The Ecology of Natural Disturbance and Patch Dynamics. New York: Academic Press.Google Scholar
Quick, C. R. 1935. Notes on the germination of Ceanothus seeds. Madrono 3, 135140.Google Scholar
Sampson, A. W. 1944. Plant succession on burned chaparral lands in northern California. Bulletin California Agricultural Experiment Station 685.Google Scholar
Stevenson, K. L. 1956. Some observations on the microbial activity in remoistened air-dried soils. Plant and Soil 8, 170182.CrossRefGoogle Scholar
Stone, E. C. & Juhren, G. 1951. The effect of fire on the germination of the seed of Rhus ovata Wats. American Journal of Botany 38, 368372.CrossRefGoogle Scholar
Stone, E. C. & Juhren, G. 1953. Fire simulated germination. California Agriculture 7, 1314.Google Scholar
Sussman, A. S. 1965. Dormancy of soil microorganisms in relation to survival. In Ecology of Soil-Borne Plant Pathogens, eds. Baker, K. F. & Snyder, W. F., pp. 99109. Berkeley: University of California Press.Google Scholar
Sussman, A. S. & Halvorson, H. 1966. Spores: Their Dormancy and Germination. New York: Harper & Row.Google Scholar
Sweeney, J. R. 1956. Responses of vegetation to fire. University of California Publications in Botany 28, 143250.Google Scholar
Thompson, J. N. 1978. Within-patch structure and dynamics in Pastinaca sativa and resource availability to a specialized herbivore. Ecology 59, 443448.CrossRefGoogle Scholar
Turner, B. C. 1987. Two ecotypes of Neurospora intermedia. Mycologia 79, 425432.CrossRefGoogle Scholar
Waksman, S. A. & Starky, R. L. 1923. Effects of partial sterilization of soil on microbiological activities and soil fertility. III. Soil Science 16, 343357.CrossRefGoogle Scholar
Watson, A. G. & Ford, E. J. 1972. Soil fungistasis – a reappraisal. Annual Review of Phytopathology 10, 327348.CrossRefGoogle Scholar
Went, F. A. F. C. 1901. Monilia sitophila (Mont.) Sacc., ein technischer Pilz Javas. Zentralblatt fuer Bakteriologie. Parasitenkunde., Abt. II, 7, 544550.Google Scholar
Went, F. W., Juhren, G. & Juhren, M. C. 1952. Fire and biotic factors affecting germination. Ecology 33, 351364.CrossRefGoogle Scholar
Whistler, R. L. & Richards, E. L. 1970. Hemicelluloses. In The Carbohydrates, Vol. IIA, eds. Pigman, W. & Horton, D., pp. 447469. New York: Academic Press.Google Scholar
Wicklow, D. T. 1973. Microfungal populations in surface soils of manipulated prairie stands. Ecology 54, 13021310.CrossRefGoogle Scholar
Wicklow, D. T., 1975. Fire as an environmental cue initiating ascomycete development in a tall grass prairie. Mycologia 67, 852862.CrossRefGoogle Scholar
Wicklow, D. T., 1977. Germination response in Emmenanthe penduliflora (Hydrophyllaceae). Ecology 58, 201205.CrossRefGoogle Scholar
Wicklow, D. T., 1981. Biogeography and conidial fungi. In Biology of Conidial Fungi, eds. Cole, G. T. & Kendrick, B., pp. 417447. New York: Academic Press.CrossRefGoogle Scholar
Wicklow, D. T. & Hirschfield, B. J. 1979. Competitive hierarchy in post-fire ascomycetes. Mycologia 71, 4754.CrossRefGoogle Scholar
Wicklow, D. T. & Zak, J. C. 1979. Ascospore germination of carbonicolous ascomycetes in fungistatic soils: an ecological interpretation. Mycologia 71, 2238–242.CrossRefGoogle Scholar
Widden, P. & Parkinson, D. 1975. The effects of forest fire on soil microfungi. Soil Biology and Biochemistry 7, 125138.CrossRefGoogle Scholar
Wright, E. & Bollen, W. B. 1961. Microflora of douglas-fir forest soil. Ecology 42, 825828.CrossRefGoogle Scholar
Zak, J. C. & Wicklow, D. T. 1978a. Response of carbonicolous ascomycetes to aerated steam temperatures and treatment intervals. Canadian Journal of Botany 56, 23132318.CrossRefGoogle Scholar
Zak, J. C. & Wicklow, D. T. 1978b. Factors influencing patterns of ascomycete sporulation following simulated “burning” of prairie soils. Soil Biology and Biochemistry 10, 533535.CrossRefGoogle Scholar
Zak, J. C. & Wicklow, D. T. 1980. Structure and composition of a post-fire ascomycete community: role of abiotic and biotic factors. Canadian Journal of Botany 58, 19151922.CrossRefGoogle Scholar