Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:32:45.878Z Has data issue: false hasContentIssue false

Oestrogen-receptors: an overview of recent advances in their structure and function

Published online by Cambridge University Press:  05 December 2011

R. J. B. King
Affiliation:
Hormone Biochemistry Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, U.K.
Get access

Synopsis

Recent advances in our understanding of the receptor components involved in the initial events of oestradiol action are reviewed with an emphasis on aspects of clinical relevance. Two main features of the models have evolved: (1) the domain structure of the ligand-binding unit, with distinct parts of the molecule being concerned with oestrogen-binding and interaction with DNA, and other parts of the molecule having important regulatory functions; (2) the regulatory regions (oestrogen-response elements) of oestrogen-sensitive genes which specifically interact with the receptor protein.

The homologies between different proteins capable of binding ligands as diverse as oestradiol, retinoic acid and thyroid hormone point to possible interactions between such ligands. Oestrogen-response elements can recognise oestradiol receptor proteins complexed with either agonists or antagonists. Interactions with DNA may play an important rôle in determining gene expression additional to those seen at the receptor level.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. J. & Battersby, Sharon 1989. The involvement of oestrogen in the development and function of the normal human breast: histological evidence. Proceedings of the Royal Society of Edinburgh 95B, 2332.Google Scholar
Arriza, J. L., Weinberger, C., Cerelli, G., Glaser, T. M., Handelin, B. L., Housman, D. E. & Evans, R. M. 1987. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237, 268275.Google Scholar
Auricchio, F., Migliaccio, A., Di Domenico, M. & Nola, E. 1987. Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system. EMBO Journal 6, 29232929.Google Scholar
Bailly, A., Le Page, C., Rauch, M. & Milgrom, E. 1986. Sequence-specific DNA binding of the progesterone receptor to the uteroglobin gene: effects of hormone, antihormone and receptor phosphorylation. EMBO Journal 5, 32353241.Google Scholar
Barrett-Lee, P. J., Travers, M. T., McClelland, R. A., Luqmani, Y. & Coombes, R. C. 1987. Characterization of estrogen receptor messenger RNA in human breast cancer. Cancer Research 47, 66536659.Google Scholar
Black, R., Prescott, R., Bers, K., Hawkins, A., Stewart, H. & Forrest, P. 1983. Tumour cellularity, oestrogen receptors and prognosis in breast cancer. Clinical Oncology 9, 311318.Google Scholar
Carpenter, S., Georgiade, G., McCarty, K. S. Sr., and McCarty, K. S. Jr., 1989. Immunohistochemical expression of oestrogen receptor in normal breast tissue. Proceedings of the Royal Society of Edinburgh 95B, 5966.Google Scholar
Denis, M., Poellinger, L., Wikstö, A. C. & Gustaffson, J.-A. 1988. Requirement of hormone for thermal conversion of the glucocorticoid receptor to a DNA-binding state. Nature 333, 686688.Google Scholar
DeSombre, E. R. & Jensen, E. V. 1980. Estrophilin assays in breast cancer: quantitative features and application to the mastectomy specimen. Cancer 46, 27832788.Google Scholar
EORTC Quality Control Programme 1988. These data collated on behalf of the group by Dr R. Blankenstein (Utrecht).Google Scholar
Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240, 889895.Google Scholar
Garcia, T., Lehrer, S., Bloomer, W. D. & Schachter, B. 1988. A variant estrogen receptor messenger ribonucleic acid is associated with reduced levels of estrogen binding in human mammary tumors. Molecular Endocrinology 2, 785791.Google Scholar
Gehring, U. 1986. Genetics of glucocorticoid receptor. Molecular and Cellular Endocrinology 48, 8996.Google Scholar
Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. 1987. Identification of a receptor for the morphogen retinoic acid. Nature 330, 624629.Google Scholar
Glass, C. K., Holloway, J. M., Devary, O. V. & Rosenfeld, M. G. 1988. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54, 313323.Google Scholar
Godowski, P. J., Rusconi, S., Miesfeld, R. & Yamamoto, K. R. 1987. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325, 365368.Google Scholar
Godowski, P. J., Picard, D., Yamamoto, K. R. 1988. Signal transduction and transcriptional regulation by glucocorticoid receptor-LexA fusion proteins. Science 241, 812817.Google Scholar
Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J.-M., Argos, P. & Chambon, P. 1987. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320, 134139.Google Scholar
Green, S. & Chambon, P. 1986. A superfamily of potentially oncogenic hormone receptors. Nature 324, 615617.Google Scholar
Green, S. & Chambon, P. 1987. Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325, 7577.Google Scholar
Greene, G. L., Gilna, P., Waterfield, M., Baker, A., Hort, Y. & Shine, J. 1986. Sequence and expression of human estrogen receptor complementary DNA. Science 231, 11501154.Google Scholar
Joab, I., Radanyi, C., Renoir, M., Buchou, T., Catelli, M.-G., Binart, N., Mester, J. & Baullieu, E.-E. 1984. Common non-hormone binding component in non-transformed chick oviduct receptors of four steroid hormones. Nature 308, 850853.Google Scholar
Jordan, V. C., Dix, C. J., Rowsby, L. & Prestwich, G. 1977. Studies on the mechanism of action of the nonsteroidal antioestrogen tamoxifen (I.C.I. 46, 474) in the rat. Molecular and Cellular Endocrinology 7, 177192.Google Scholar
Jordan, V. C., Koch, R. & Lieberman, M. E. 1986. Structure-activity relationships of nonsteroidal estrogens and antiestrogens. In Estrogen/Antiestrogen Action and Breast Cancer Therapy, ed. Jordan, V. C., pp. 1942. Madison: University of Wisconsin Press.Google Scholar
King, R. J. B. 1986. Receptor structure: a personal assessment of the current status. Journal of Steroid Biochemistry 25, 451454.Google Scholar
King, R. J. B. 1987. Structure and function of steroid receptors. Journal of Endocrinology 114, 341349.Google Scholar
Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.-R. & Chambon, P. 1987. Functional domains of the human estrogen receptor. Cell 51, 941951.Google Scholar
Kumar, V. & Chambon, P. 1988. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55, 154156.Google Scholar
Miller, M. A., Mullick, A., Greene, G. L. & Katzenellenbogen, B. S. 1985. Characterization of the subunit nature of nuclear estrogen receptors by chemical cross-linking and dense amino acid labelling. Endocrinology 117, 515522.Google Scholar
Mumford, C. J., Elston, C. W., Campbell, F. C., Blamey, R. W., Johnson, J., Nicholson, R. I. & Griffiths, K. 1983. Tumour epithelial cellularity and quantitative oestrogen receptor values in primary breast cancer. British Journal of Cancer 47, 549552.Google Scholar
Nawata, H., Chong, M. T., Bronzert, D. & Lippman, M. E. 1981. Estradiol-independent growth of a subline of MCF-7 human breast cancer cells in culture. Journal of Biological Chemistry 256, 68956902.Google Scholar
Notides, A. C. 1978. Conformational forms of the estrogen receptor. In Receptors and Hormone Action, eds. O'Malley, B. W. & Birnbaumer, L., Vol. 2, pp. 3340. New York: Academic Press.Google Scholar
Parker, M. G. 1983. Enhancer elements activated by steroid hormones. Nature 304, 687688.Google Scholar
Parker, M. G. 1987. Oncogenes from hormone receptors. Journal of Endocrinology 112, 12.Google Scholar
Parker, M. G., Webb, P. Needham, M., White, R. & Ham, J. 1987. Identification of androgen response elements in mouse mammary tumour virus and the rat prostate C3 gene. Journal of Cellular Biochemistry 35, 285292.Google Scholar
Penney, G. C. & Hawkins, R. A. 1982. Histochemical detection of oestrogen receptors: a progress report. British Journal of Cancer 45, 237246.Google Scholar
Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. 1987. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444450.Google Scholar
Piva, R., Bianchini, E., Kumar, V. L., Chambon, P. & del Senno, L. 1988. Estrogen induced increase of estrogen receptor RNA in human breast cancer cells. Biochemical and Biophysical Research Communications 155, 943949.Google Scholar
Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H. & Vennstrom, B. 1986. The C-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635640.Google Scholar
Schuh, S., Yonemoto, W., Brugge, J., Bauer, V. J., Riehl, R. M., Sullivan, W. P. & Toft, D. O. 1985. A 90,000-dalton binding protein common to both steroid receptos and the Rous sarcoma virus transforming protein, pp60v_src. Journal of Biological Chemistry 260, 1429214296.Google Scholar
Schütz, G., Strähle, U., Klock, G. & Schmid, W. 1988. Similarities and differences of steroid response elements. In Hormones and Cancer, Vol. 3, eds. Bresciani, F., King, R. J. B., Lippman, M. E. and Raynaud, J.-P., pp. 8187, New York: Raven Press.Google Scholar
Sheridan, P. J., Buchanan, J. M., Anselmo, V. C. & Martin, P. M. 1979. Equilibrium: the intracellular distribution of steroid receptors. Nature 282, 579582.Google Scholar
Stewart, H. 1989. Clinical experience in the use of the antioestrogen tamoxifen in the treatment of breast cancer. Proceedings of the Royal Society of Edinburgh 95B, 231237.Google Scholar
Stumpf, W. E. & Sar, M. 1976. Autoradiographic localization of estrogen, androgen, progestin, and glucocorticosteroid in “target tissues” and “non-target tissues”. In Receptors and Mechanism of Action of Steroid Hormones, ed. Pasqualini, J. R., part 1, pp. 4184. New York: Marcel Dekker.Google Scholar
Tate, A. C., Greene, G. L., DeSombre, E. R., Jensen, E. V. & Jordan, V. C. 1984. Differences between estrogen- and anti-estrogen receptor complexes from human breast tumors identified with an antibody raised against the estrogen receptor. Cancer Research 44, 10121018.Google Scholar
Waterman, M. L., Adler, S., Nelson, C., Greene, G. L., Evans, R. M. & Rosenfeld, M. G. 1988. A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Molecular Endocrinology 2, 1421.Google Scholar
Watts, C. K. W., Murphy, L. C. & Sutherland, R. L. 1986. Properties of high affinity intracellular binding sites for antiestrogens. In Estrogen/Antiestrogen Action and Breast Cancer Therapy, ed. Jordan, V. C., pp. 93114. Madison: University of Wisconsin Press.Google Scholar
Webster, N. J. G., Green, S., Jin, J. R. & Chambon, P. 1988. The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54, 199207.Google Scholar
Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J. & Evans, R. M. 1986. The C-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641646.Google Scholar
Welshons, W. V. & Gorski, J. 1986. Nuclear location of estrogen receptors. In The Receptors, ed. Conn, P. M., Vol. IV, pp. 97147. New York: Academic Press.Google Scholar
Willmann, T. & Beato, M. 1986. Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumour virus DNA. Nature 324, 688691.Google Scholar
Yamamoto, K. R. 1985. Steroid receptor transcription of specific genes and gene networks. Annual Review of Genetics 19, 209252.Google Scholar