No CrossRef data available.
Published online by Cambridge University Press: 05 December 2011
In addition to secreted growth factors, acting as autocrine or paracrine mitogens, breast cancer cells secrete other proteins whose function and significance in mammary carcinogenesis may be important. Among them, proteases are particularly interesting since it has been suggested that they play a role in metastatic process, and since at least two of them, the tissue type plasminogen activator and pro-cathepsin D, the precursor of a lysosomal protease, are induced by oestrogens and secreted in excess in some mammary cancer cells.
In oestrogen-receptor-positive human breast cancer cell lines (MCF7, ZR75–1), oestrogens stimulate cell proliferation and specifically increase the secretion into the culture medium of a 52,000-dalton (52-kDa) glycoprotein identified as the secreted precursor of a cathepsin D bearing mannose-6-phosphate signals, which is routed to lysosomes via mannose-6-phosphate-IGF-II receptors. We have determined the structure of this procathepsin D by sequencing its complete cDNA sequence, its chromosomal localisation and its transcriptional regulation by oestrogens and other mitogens. In breast cancer cells, pro-cathepsin D production and secretion is much higher and its processing is altered compared to normal mammary epithelial cells in culture. In vitro, pro-cathepsin D acts as an autocrine mitogen on breast cancer cells and can be activated at acidic pH to degrade extracellular matrix, suggesting a role in mediating the effect of oestrogens on tumour growth and invasion. Retrospective clinical studies indicate a significant correlation between high 52-kDa cathepsin D concentrations in the cytosol of primary breast cancer and poor prognosis (Danish Breast Cancer Group, S. Thorpe, Copenhagen). We propose that among the proteases secreted by cancer cells, 52-kDa cathepsin D is important both as a tissue marker in breast cancer and as a potential factor involved in carcinogenesis.