Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T13:30:23.681Z Has data issue: false hasContentIssue false

Ninety Years' High-pressure Research

Published online by Cambridge University Press:  05 December 2011

H. Flügel
Affiliation:
Institut für Meereskunde an der Universität Kiel, Germany.
Get access

Extract

The question as to the existence of life at great depths was still a matter of controversy in the last century. In spite of the fact that the remains of living animals were recovered from several hundreds of metres, many marine biologists hesitated to believe that animal life could exist in deep-sea conditions. In 1841, Sir James Clark Ross, the leader of the British Antarctic Expedition, claimed:‘… and although contrary to the general belief of naturalists, I have no doubt that from however great a depth we may be able to bring the mud and stones of the bed of the ocean, we shall find them teeming with animal life; the extreme pressure at the greatest depth does not appear to affect these creatures; hitherto we have not been able to determine this point beyond a thousand fathoms, but from that depth several shellfish have been brought up with the mud’ (Murray 1895, p. 79). Edward Forbes, naturalist on H.M.S.S. Beacon, for instance, referred to the marine environment in excess of 550 m as the ‘azoic zone’. But the classical deep-sea expeditions in the second half of the nineteenth century, among others the famous voyage of the Challenger, produced overwhelming evidence for a more or less abundant abyssal fauna.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References To Literature

Auclair, W. and Marsland, D. A., 1958. From stability of ciliates in relation to pressure and temperature. Biol. Bull. Mar. Biol. Lab. Woods Hole, 115, 384396CrossRefGoogle Scholar
Certes, M., 1884. Note relative à l'action des hautes pressions sur la vitalite des microorganismes d'eau douce et d'eau de mer. C. R. Séanc. Soc. Biol., 36, 220222.Google Scholar
Draper, J. W. and Edwards, D. J., 1932. Some effects of high pressure on developing marine forms. Biol. Bull. Mar. Biol. Lab. Woods Hole, 63, 99107.CrossRefGoogle Scholar
Ebbecke, U., 1944. Lebensvorgange unter der Einwirkung hoher Drucke. Ergebn. Physiol., 45, 34183.Google Scholar
Flügel, H., 1972. Pressure—Animals. In Marine Ecology, 1, pp. 14071450. (Ed. Kinne, O..) London: Wiley-Interscience.Google Scholar
Fontaine, M., 1929. De l'augmentation de la consommation d'O2 des animaux marins sous l'influence des fortes pressions. Ses variations en fonction de l'intensite de la compression. C.R.Hebd. Séanc. Acad. Sci., Paris, 188, 460461.Google Scholar
Hochachka, P. W., Schneider, D. E. and Kuznetsov, A., 1970. Interacting pressure and temperature effects on enzymes of marine poikilotherms: Catalytic and regulatory properties of FDPase from deep and shallow-water fishes. Mar. Biol., 7, 285293.CrossRefGoogle Scholar
Landau, J. and Marsland, D. A., 1952. Temperature-pressure studies of the cardiac rate in tissue culture explants from the heart of the tadpole (Ranapipiens). J. Cell. Comp. Physiol., 40, 367382.CrossRefGoogle Scholar
Landau, J. and Thibodeau, L., 1962. The micromorphology of Amoeba proteus during pressure-induced changes in the sol-gel cycle. Expl Cell. Res., 27, 591594.CrossRefGoogle ScholarPubMed
Landau, J., Zimmerman, A. M. and Marsland, D. A., 1954. Temperature-pressure experiments on Amoeba proteus: Plasmagel structure in relation to form and movement. J. Cell. Comp. Physiol., 44,211232.CrossRefGoogle ScholarPubMed
Macdonald, A. G. and Gilchrist, I., 1969. The physiological problems and equipment for the recovery and study of deep sea animals. Oceanology International, Brighton, England.Google Scholar
Marsland, D. A., 1950. The mechanisms of cell division: temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J. Cell. Comp. Physiol, 36, 205227.CrossRefGoogle ScholarPubMed
Marsland, D. A., 1957. Temperature-pressure studies on the role of sol-gel reactions in cell division. In The influence of Temperature in Biological Systems, pp. 111126. (Ed. Johnson, F. H..) Washington: Am. Physiol. Soc.Google Scholar
Marsland, D. A., 1970. Pressure-temperature studies on the mechanisms of cell division. In High Pressure Effects on Cellular Processes, pp. 259312. (Ed. Zimmerman, A. M..) New York: Academic Press.Google Scholar
Menzies, R. J. and Wilson, J. B., 1961. Preliminary field experiments on the relative importance of pressure and temperature on the penetration of marine invertebrates into the deep sea. Oikos, 12, 302309.CrossRefGoogle Scholar
Murray, J., 1895. A summary of the scientific results, Rep. Scient. Res. Voy. HMS Challenger, Summary, 1, 769 pp.Google Scholar
Naroska, V., 1968. Vergleichende Untersuchungen über den Einfluss des hydrostatischen Druckes auf Überlebensfähigkeit und Stoffwechselintensität mariner Evertebraten und Teleosteer. Kieler Meeresforsch., 24, 95123.Google Scholar
Pease, D. C. and Kitching, J. A., 1939. The influence of hydrostatic pressure upon ciliary frequency. J. Cell. Comp. Physiol, 14, 135142.CrossRefGoogle Scholar
Regnard, P., 1884. Effect des hautes pressions sur les animaux marins. C. R. Séanc. Soc. Biol, 36, 394395.Google Scholar
Regnard, P., 1885. Phénoménes objectifs que l'on peut observer sur les animaux soumis aux hautes pressions. C. R. Seanc. Soc. Biol, 37, 510515.Google Scholar
Regnard, P., 1891. Recherches expérimental sur les conditions physiques de la vie dans les eaux. Paris: Masson.Google Scholar
Schlieper, C., 1963. Biologische Wirkungen hoher Wasserdrücke. ExperimentelleTiefsee-Physiologie. Veröff. Inst. Meeresforsch. Bremerh. (Sonderbd), 3, 3148.Google Scholar
Schlieper, C., 1968. High pressure effects on marine invertebrates and fishes. Mar. Biol, 2, 512.CrossRefGoogle Scholar