Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T03:15:41.895Z Has data issue: false hasContentIssue false

Microenvironments in marine sediments

Published online by Cambridge University Press:  05 December 2011

J. G. Anderson
Affiliation:
Department of Applied Microbiology, University of Strathclyde
P. S. Meadows
Affiliation:
Department of Zoology, University of Glasgow
Get access

Synopsis

Shallow water and intertidal marine sediments are often heterogeneous. This heterogeneity has led to a definition of microenvironments and their associated biological species. The definition encompasses habitat and species size, species behaviour and physiology, stability and environmental interfaces. We distinguish between open and closed interfaces, and suggest an associated topological structure. Examples are given from the intertidal zone. Three of these are discussed in detail.

(i)Sand grains. The occurrence of periphytic micro-organisms on sand grains is considered. The topography of the sand grain surface is closely related to the distribution of microbial colonies some of which contain a range of species. Bacteria, blue-green algae and diatoms have been identified. Species interactions and micro-variation in sediment physico-chemistry are likely to affect the constituents, distribution and abundance of the colonies. The activities of periphytic micro-organisms change the bulk properties of sediments.

(ii)Banding in sediments. Characteristic banding patterns are described from a sandy and muddy intertidal shore. Marked discontinuities in the microbial flora and physico-chemical properties occur at interfaces between the bands. For example, Eh, chlorophyll levels, and sulphide can all change dramatically over a few mm. The significance of these alterations for the meiobenthic and interstitial fauna is discussed.

(iii)Invertebrate burrow linings.Bioturbation structures including invertebrate burrows change local properties of sediments. The microbial and chemical properties of Nereis diversicolor burrow linings are described in detail. Sediment from the burrow lining closely resembles the sediment surface in many of its attributes. The sediment/water interfacial zone with its associated microbial and chemical properties is therefore extended vertically into sediments by these structures. Attention is drawn to the stabilising function of burrows and to their palaeoecological significance.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. G. and Meadows, P. S, 1969. Bacteria on intertidal sand grains. Hydrobiologia, 33, 3346.CrossRefGoogle Scholar
Atkinson, H. J., 1973a. The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). I. The influence of oxygen tension and body size. J. Exp. Biol., 59, 255266.CrossRefGoogle Scholar
Atkinson, H. J., 1973b. The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). II. The effects of changes in the imposed oxygen regime. J. Exp. Biol., 59, 267274.CrossRefGoogle Scholar
Batoosingh, E. and Anthony, E. H., 1971. Direct and indirect observations of bacteria on marine pebbles. Can. J. Microbiol, 17, 655664.CrossRefGoogle ScholarPubMed
Berner, R. A., 1976. The benthic boundary layer from the viewpoint of a geochemist. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 3355. Plenum, New York and London.CrossRefGoogle Scholar
Cappenberg, T. E., 1974a. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek, 40, 285295.CrossRefGoogle ScholarPubMed
Cappenberg, T. E., 1974b. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek, 40, 297306.CrossRefGoogle ScholarPubMed
Dale, N. G., 1974. Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr., 19,509518.CrossRefGoogle Scholar
de Wilde, P. A. W. J., 1976. The benthic boundary layer from the viewpoint of a biologist. In The Benthic Boundary Layer. McCave, I. N., Ed. pp. 8194. Plenum, New York and London.CrossRefGoogle Scholar
Edwards, R. W., 1958. The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge. Ann. Appl. Biol., 46, 457464.CrossRefGoogle Scholar
Edwards, R. W.and Rolley, H. L. J., 1965. Oxygen consumption in river muds. J. Ecol, 53, 119.CrossRefGoogle Scholar
Farrow, G. E., 1975. Techniques for the study of fossil and recent traces. In The Study of Trace Fossils, Frey, R. W., Ed. Ch. 23. Springer, New York.Google Scholar
Fenchel, T., 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol. Oceanogr., 15, 1420.CrossRefGoogle Scholar
Fenchel, T., 1972. Aspects of decomposer food chains in marine benthos. Verh. Dt. Zool. Ges., 65, 1422.Google Scholar
Fenchel, T. and Riedl, R. J., 1970. The sulfide system: a new biotic community underneath the oxidised layer of marine sand bottoms. Mar. Biol., 7, 255268.CrossRefGoogle Scholar
Goldhaber, M. and Kaplan, I. E., 1974. The sulfur cycle. In The Sea, 5, Goldberg, E. D., Ed. pp. 599655. Wiley-Interscience, New York.Google Scholar
Gray, T. R. G, Baxby, P., Hill, I. E. and Goodfellow, M., 1968. Direct observation of bacteria in soil. In The Ecology of Soil Bacteria, Gray, T. R. G. and Parkinson, D., Eds. pp. 171192. Liverpool University Press.Google Scholar
Hargrave, B. T., 1976. The central role of invertebrate faeces in sediment decomposition. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J. M. and Macfadyen, A., Eds. pp. 301321. Blackwell, Oxford.Google Scholar
Hissett, R. and Gray, T. R. G., 1976. Microsites and time changes in soil microbial ecology. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J. M. and Macfadyen, A., Eds. pp. 2339. Blackwell, Oxford.Google Scholar
Holland, A. S., Zingmark, R. G., Dean, J. M., 1974. Quantitative evidence concerning the stabilization of sediment by marine benthic diatoms. Mar. Biol., 27, 191196.CrossRefGoogle Scholar
Jansson, B. O., 1962. Salinity resistance and salinity preference of two oligochaetes, Aktedrilus monospermathecus Knollner and Marionina preclitellochaeta n.sp., from the interstitial fauna of marine sandy beaches. Oikos, 13, 293305.CrossRefGoogle Scholar
Lasserre, P., 1971. Donnees écologiques sur la répartition des oligochetes marins méio-benthiques. Incidence des paramètres salinité-température sur le métabolisme respiratoire de deux especes euryhalines du genre Marionina Michaelsen (1889) (Enchytraeidae, Oligochaeta). Vie Milieu, 22, 523540.Google Scholar
Lasserre, P., 1976. Metabolic activities of benthic microfauna and meiofauna. Recent advances and review of suitable methods of analysis. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 95142.Plenum, New York and London.CrossRefGoogle Scholar
Lasserre, P.and Renaud-Mornant, J., 1973. Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth. J. Sea Res., 7, 290302.CrossRefGoogle Scholar
Lowe, W. E. and Gray, T. R. G., 1973. Ecological studies on coccoid bacteria in a pine forest soil. II. Growth of bacteria introduced into soil. Soil Biol. Biochem., 5, 449462.CrossRefGoogle Scholar
Marshall, K. C, 1976. Interfaces in Microbial Ecology. Harvard University Press, Mass.CrossRefGoogle Scholar
Marshall, K. C and Cruickshank, R. H., 1973. Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch. Mikrobiol., 91, 2940.CrossRefGoogle ScholarPubMed
McIntyre, A. D., Davies, J. M., De Wilde, P. J., Lasserre, P., Mills, E. L., Pamatmat, M. M., Teal, J. M, Thiel, H., Zeitzchel, B. and Hargrave, B. T., 1976. Metabolism at the benthic boundary. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 297310. Plenum, New York and London.Google Scholar
Meadows, P. S., 1964a. Experiments on substrate selection by Corophium species: films and bacteria on sand particles. J. Exp. Biol., 41, 499511.CrossRefGoogle Scholar
Meadows, P. S., 1964b. Substrate selection by Corophium species: the particle size of substrates. J. Anim. Ecol., 33, 387394CrossRefGoogle Scholar
Meadows, P. S., 1965. Attachment of marine- and fresh-water bacteria to solid surfaces. Nature, Lond., 207 1108.CrossRefGoogle Scholar
Meadows, P. S., 1971. The attachment of bacteria to solid surfaces. Arch. Mikrobiol., 75, 374381.CrossRefGoogle ScholarPubMed
Meadows, P. S.and Anderson, J. G., 1966. Micro-organisms attached to marine and freshwater sand grains. Nature, Lond., 212, 10591060.CrossRefGoogle Scholar
Meadows, P. S.and Anderson, J. G., 1968. Micro-organisms attached to marine sand grains. J. Mar. Biol. Ass. U.K., 48, 161175.CrossRefGoogle Scholar
Meadows, P. S.and Campbell, J. I., 1972a. Habitat selection by aquatic invertebrates. Adv. Mar. Biol., 10,271382.CrossRefGoogle Scholar
Meadows, P. S.and Campbell, J. I., 1972b. Habitat selection and animal distribution in the sea: the evolution of a concept. Proc. Roy. Soc. Edinb., B73, 145157.Google Scholar
Mendelson, B., 1968. Introduction to Topology. AUyn and Bacon, Boston.Google Scholar
Mudd, S. and Mudd, E. B. H., 1924a. The penetration of bacteria through capillary spaces. IV. A kinetic mechanism in interfaces. J. Exp. Med., 40, 633645.CrossRefGoogle Scholar
Mudd, S and Mudd, E. B. H., 1924b. Certain interfacial tension relations and the behaviour of bacteria in films. J. Exp. Med., 40, 647660.CrossRefGoogle ScholarPubMed
Nedwell, D. B. and Floodgate, G. D., 1972. The effect of microbiological activity upon the sedimentary sulphur cycle. Mar. Biol., 16, 192200.CrossRefGoogle Scholar
Neumann, A. C., Gebelein, C. D., Scoffin, T. P., 1970. The composition, structure, and erodability of subtidal mats, Abaco, Bahamas. J. Sedim. Petrol., 40, 274297.Google Scholar
Nixon, S. W., Oviatt, C. A. and Hale, S. S., 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J. M. and Macfadyen, A., Eds. pp. 269283. Blackwell, Oxford.Google Scholar
Pugh, K. B., Andrews, A. R., Gibbs, C. F., Davis, S. J., Floodgate, G. D., 1974. Some physical, chemical and microbiological characteristics of two beaches of Anglesey.J. Exp. Mar. Biol. Ecol., 15,305334.CrossRefGoogle Scholar
Ramm, A. E. and Bella, D. A., 1974. Sulfide production in anaerobic microcosisms. Limnol. Oceanogr., 19, 110118.CrossRefGoogle Scholar
Richards, A. F. and Parks, J. M., 1976. Marine geotechnology. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 157181. Plenum, New York and London.CrossRefGoogle Scholar
Rhoads, D. C., 1974. Organism-sediment relations on the muddy seafloor. Oceanogr. Mar. Biol. Ann.Rev., 12, 263300.Google Scholar
Rhoads, D. C and Young, D. K., 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res., 28, 150178.Google Scholar
Round, F. E. and Palmer, J. D., 1966. Persistent, vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the River Avon. J. Mar. Biol. Ass. U.K., 46, 191214.CrossRefGoogle Scholar
Rowe, G. T., 1974. The effects of the benthic fauna on the physical properties of deep-sea sediments. In Deep-Sea Sediments: Physical and Mechanical Properties, Inderbitzen, A. L., Ed. pp. 381400.Plenum, New York.CrossRefGoogle Scholar
Schafer, W., 1972. Ecology and Paleoecology of Marine Environments. Oliver and Boyd, Edinburgh.Google Scholar
Scoffin, T. P., 1970. The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J. Sedim. Petrol, 40, 249273.Google Scholar
Siala, A. and Gray, T. R. G., 1974. Growth of Bacillus subtilis and spore germination in soil observed by a fluorescent-antibody technique. J. Gen. Microbial., 81, 191198.Google Scholar
Swedmark, B., 1964. The interstitial fauna of marine sand. Biol. Rev., 39, 142.CrossRefGoogle Scholar
Thorson, G., 1957. Bottom communities (sublittoral or shallow shelf). In Treatise on Marine Ecology and Paleoecology, Hedgpeth, J. W., Ed. Mem. Geol. Soc. Am., 67, 461534.Google Scholar
Webb, J. E., 1969. Biologically significant properties of submerged marine sands. Proc. Roy. Soc. Lond., 174B, 355402.Google Scholar
Webb, J. E., Dörjes, D. J., Gray, J. S., Hessler, R. R., Van Andel, Tj. H., Werner, F., Wolff, T., Zijlstra, J. J. and Rhoads, D. C., 1976. Organism-sediment relationships. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 273295. Plenum, New York and London.Google Scholar
Williams, S. T. and Mayfield, C. I., 1971. Studies on the ecology of actinomycetes in soil. III. The behaviour of neutrophilic streptomycetes in acid soil. Soil Biol. Biochem., 3, 197208.CrossRefGoogle Scholar
Wood, E. J. F., 1967. Microbiology of Oceans and Estuaries. Elsevier, Amsterdam.Google Scholar
Young, D. K. and Rhoads, D. C., 1971. Animal sediment relations in Cape Cod Bay, Massachusetts. I. A transect study. Mar. Biol., 11, 242254.CrossRefGoogle Scholar