Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T00:12:30.939Z Has data issue: false hasContentIssue false

Induction of chromosomal damage by ozone in the root meristems of Norway spruce

Published online by Cambridge University Press:  05 December 2011

M. Müller
Affiliation:
Institute of Plant Physiology, Karl-Franzens-University Graz, Schuberstraße 51, A-8010 Graz, Austria
D. Grill
Affiliation:
Institute of Plant Physiology, Karl-Franzens-University Graz, Schuberstraße 51, A-8010 Graz, Austria
Get access

Synopsis

Spruce plants (one clone of Picea abies (L.) Karst.) were exposed in environmental chambers to different levels of ozone for 42 days to study the influences of enhanced ozone on root tip chromosomes directly after fumigation had ceased. No visible symptoms resulted from these treatments. The classification of chromosomal aberrations was used as a method to characterise the influences on the root tips caused by ozone. In comparison to the control the fumigated variant showed an increased number of chromosomal abnormalities. Another clone of Picea was used to investigate the ‘post-fumigation long-term effect’ in the genetic material caused by enhanced ozone. These clonal trees appeared to be relatively ozone-sensitive, as pigment reduction and chlorotic spots were observed directly after fumigation had ceased. The spruce trees were also exposed in environmental chambers to different levels of ozone for 24 weeks and then they were transferred to a field near the Institute. Some 21 months after the fumigation had ceased those trees that had been fumigated showed an increased number of chromosomal aberrations compared with the control.

The observed chromosomal abnormalities in all the variants of the experiments consisted of chromosomal ‘stickiness’, chromosome breakage, and fragmentation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alscher, R., Amundson, R., Cumming, J., Fellows, S., Fincher, J., Rubin, G., Van Leuken, P. & Weinstein, L. 1989. Seasonal changes in the pigments, carbohydrates and growth of red spruce as affected by ozone. New Phytologist 113, 211–23.CrossRefGoogle Scholar
Barnes, R. L. 1972. Effects of chronic exposure to ozone on photosynthesis and respiration of pines. Environmental Pollution 3, 133–8.Google Scholar
Blank, L. W. 1985. A new type of forest decline in Germany. Nature 314, 311–4.CrossRefGoogle Scholar
Blank, L., Payer, H., Pfirrmann, T., Gnatz, G., Kloos, M., Runkel, K. H., Schmolke, W., Strube, D. & Rehfuess, K. 1990. Effects of ozone, acid mist, and soil characteristics on clonal Norway spruce (Picea abies L., Karst.) - an introduction to the joint 14 month tree exposure experiment in closed chambers. Environmental Pollution 64, 189207.CrossRefGoogle Scholar
Fetner, R. H. 1958. Chromosome breakage in Vicia faba by ozone. Nature 181, 504–5.CrossRefGoogle Scholar
Gartner, E. J. 1988. Forest decline in the Federal Republic of Germany - appearance, extent, potential causes. Geo Journal 17, 165–71.Google Scholar
Gorissen, A. & Van Veen, J. A. 1988. Temporary disturbance of translocation of assimilates in Douglas firs caused by low levels of ozone and sulfur dioxide. Plant Physiology 88, 559–63.CrossRefGoogle ScholarPubMed
Hogsett, W. E., Plocker, M., Wildman, V., Tingey, D. T. & Bennett, J. P. 1985. Growth response of two varieties of slash pine seedlings to chronic ozone exposures. Canadian Journal of Botany 63, 2369–76.CrossRefGoogle Scholar
Janakiraman, R. & Harney, P. 1976. Effects of ozone on meiotic chromosomes of Vicia faba. Canadian Journal Genetics and Cytology 18, 727–30.CrossRefGoogle ScholarPubMed
Klasterska, I., Narajan, A. T. & Ramel, C. 1976. An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83, 153–62.CrossRefGoogle ScholarPubMed
Krause, G. H. M., Arndt, U., Brandt, D. J., Bucher, J., Kenk, G. & Matzner, E. 1986. Forest decline in Europe: Development and possible causes. Water, Air and Soil Pollution 31, 647–68.CrossRefGoogle Scholar
Kress, L. W., Skelly, J. M. & Hinkelmann, K. H. 1982. Growth impact of ozone, NO2 and/or SO2 on Pinus taeda L. Environmental Monitoring and Assessment 1, 229–39.CrossRefGoogle Scholar
Krupa, S. V. & Kickert, R. N. 1989. The greenhouse effect: impacts of ultraviolet B (UV-B) radiation, carbon dioxide (CO2) and ozone (O3) on vegetation. Environmental Pollution 61, 263–93.CrossRefGoogle ScholarPubMed
Langebartels, C., Heller, W., Kerner, K., Leonardi, S., Rosemann, D., Schraudner, M., Trost, M. & Sandermann, H. 1990. Ozone induced defence reactions in plants. In Payer, H. D., Pfirrmann, T. & Mathy, P. (Eds) Environmental research with plants in closed chambers, pp. 358–68. CEC - Air Pollution Report no. 26.Google Scholar
Lippert, M. 1992. Multifaktorieller Ansatz zur Analyse der Langzeitwirkung erhöhter CO2- und Ozonkon-zentrationen: Gaswechselmessungen an jungen Fichten und Buchen in Expositionskammern. PhD Thesis, University of Würzburg.Google Scholar
Lütz, C. 1992. Reaktionen von Fichten bei unterschiedlichen Immissionsbelastungen. In Guttenberger, H., Bermadinger, E. & Grill, D. (Eds) Pflanze, Umwelt, Stoffwechsel, pp. 8798.Google Scholar
Ma, T. 1982. Vicia cytogenetic tests for environmental mutagens. A report of the US Environmental Protection Agency. Gene Tox. Program. Mutation Research 99, 257–71.CrossRefGoogle ScholarPubMed
Matyssek, R., Günthardt-Goerg, M. S., Saurer, M. & Keller, T. 1992. Seasonal growth δ13C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees 6, 6976.CrossRefGoogle Scholar
McGill, M., Pathak, S. & Hsu, T. C. 1974. Effects of ethidium bromide on mitosis and chromosomes: a possible material basis for chromosome stickiness. Chromosoma 47, 157–67.CrossRefGoogle ScholarPubMed
McLaughlin, S. B. 1985. Effects of air pollutants on forests: a critical review. Journal of the Air Pollution Control Association 35, 512–21.CrossRefGoogle Scholar
Miller, R. P., Parmeter, J. R., Flick, B. H. & Martinez, C. W. 1969. Ozone dosage response of ponderosa pine seedlings. Journal of the Air Pollution Control Association 19, 435–8.CrossRefGoogle Scholar
Müller, M., Guttenberger, H., Grill, D., Druskovic, B. & Paradiz, J. 1991. A cytogenetic method for examining the vitality of spruces. Phyton (Austria) 31, 143–55.Google Scholar
Müller, M., Guttenberger, H., Bermadinger-Stabentheiner, E. & Grill, D. 1992. Die praktischen Erfahrungen mit der cytogenetischen Bioindikation zur Früherkennung von Vegetationsschäden. Allgemeine Forst- und Jagdzeitung 163, 164–8.Google Scholar
Pfirrmann, T. 1992. Wechselwirkungen von Ozon, Kohlendioxid und Wassermangel bei zwei Klonen unterschiedlich mit Kalium ernährter Fichten. PhD Thesis, University of Gießen.Google Scholar
Polle, A., Pfirrmann, T., Chakrabarti, S. & Rennenberg, H. 1993. The effects of enhanced ozone and enhanced carbone dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant, Cell and Environment 16, 311–6.CrossRefGoogle Scholar
Prinz, B., Krause, G. H. M. & Stratman, H. 1982. Forest damage in the Federal Republic of Germany. LIS Report No. 28, LIS, Essen, CEGB translation T14240.Google Scholar
Reich, P. B., Schoettle, A. W., Stroo, H. F., Troiano, J. & Amundson, R. G. 1987. Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. I. Net photosynthesis and growth. Canadian Journal of Botany 65, 977–87.CrossRefGoogle Scholar
Schairer, L. A., Van't Hof, J., Hayes, C. G., Burton, R. M. & De Serres, F. J. 1979. Measurement of biological activity of ambient air mixtures using a mobile laboratory for in situ exposures: Preliminary results from the tradescantia plant test system. Environmental Science Research 15, 419–40.Google Scholar
Sen Gupta, A., Alscher, R. G. & McCune, D. C. 1991. Response of photosynthesis and cellular antioxidants to ozone in populus leaves. Plant Physiology 96, 650–5.CrossRefGoogle Scholar
Spence, R. D., Rykiel, E. J. & Sharpe, P. J. H. 1990. Ozone alters carbon allocation in loblolly pine: assessment with carbon-11 labeling. Environmental Pollution 64, 93106.CrossRefGoogle ScholarPubMed
Stephen, J. 1979. Cytological causes of spontaneous fruit abortion in Haemanthus katherinae Baker. Cytologia 44, 805–12.CrossRefGoogle Scholar
Tingey, D. T., Wilhour, R. G. & Standley, C. 1976. The effect of chronic ozone exposures on the metabolic content of ponderosa pine seedlings. Forest Science 22, 234–41.Google Scholar
Vogels, K., Guderian, R. & Masuch, G. 1986. Studies on Norway spruce (Picea abies Karst.) in damaged forest stands and in climatic chambers experiments. In Schneider, T. (Ed.) Acidification and its policy implications, pp. 171–86. Amsterdam: Elsevier.Google Scholar
Wallin, G., Skärby, L. & Sellden, G. 1990. Long-term exposure of Norway spruce, Picea abies L., Karst., to ozone in open top chambers. I. The effects on the capacity of net photosynthesis, dark respiration and leaf conductance of shoots of different ages. New Phytologist 115, 335–44.CrossRefGoogle Scholar
Williams, W. T. 1986. Effect of oxidant air pollution on needle health and annual-ring width in a Ponderosa pine forest. Environmental Conservation 13, 229–34.CrossRefGoogle Scholar
Wiselogel, E., Bailey, J. K., Newton, R. J. & Fong, F. 1991. Growth response of loblolly pine (Pinus taeda L.) seedlings to ozone fumigation. Environmental Pollution 71, 4356.CrossRefGoogle ScholarPubMed