Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:02:00.077Z Has data issue: false hasContentIssue false

Habitat Selection and Animal Distribution in the Sea: the Evolution of a Concept*

Published online by Cambridge University Press:  05 December 2011

P. S. Meadows
Affiliation:
Department of Zoology, University of Glasgow
J. I. Campbell
Affiliation:
Department of Zoology, University of Glasgow
Get access

Synopsis

This paper considers the evolution of the concept that the local distribution of animals in the sea is largely determined by the habitat preferences and behaviour of the animals themselves. Examples are mainly taken from studies on invertebrate animals. Nineteenth-century investigations on the behavioural responses of micro-organisms to such variables as light, salinity and oxygen, stimulated analogus investigations on the behaviour of marine invertebrates. From 1920 onwards, various lines of research have developed, notably on the settlement of marine larvae, but also on habitat selection by adult planktonic and benthic invertebrates, and on host finding by parasites and commensals.

Attention has been drawn to the relevance of genetic studies on behaviour, and to the significance of investigations on terrestrial animals. A synoptic view of habitat selection has been advanced in which animals respond to a complex of interacting stimuli from their physical, chemical and biological environment.

Simple models have been presented which consider the influence of dilution of the preferred habitat by less preferred alternatives, alteration of the rate of change of a habitat, the relation between habitat preferences and lethal limits, and the colonisation of new habitats.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References To Literature

Barnes, T. G, 1934. Further observations on the salt requirements of Ligia in Bermuda. Biol. Bull. Mar. Biol. Lab., Woods Hole, 36, 124132.CrossRefGoogle Scholar
Barnes, T. G, 1938. Experiments on Ligia in Bermuda. V. Further effects of salts and of heavy sea water. Biol. Bull. Mar. Biol. Lab., Woods Hole, 74, 108116.CrossRefGoogle Scholar
Cooper, L. H. N., 1967. Stratification in the deep ocean. Sci. Prog. Lond., 55, 7390.Google Scholar
Crisp, D. J and Meadows, P. S., 1962. The chemical basis of gregariousness in cirripedes. Proc. Roy. Soc, B, 156, 500520.Google Scholar
Crisp, D. J and Meadows, P. S., 1963. Adsorbed layers: the stimulus to settlement in barnacles. Proc. Roy. Soc, B, 158, 364387.Google Scholar
Cushing, D. H., 1951. The vertical migration of planktonic Crustacea. Biol. Rev., 26, 158192.CrossRefGoogle ScholarPubMed
Davenport, D., 1950. Studies in the physiology of commensalism. I. The polynoid genus Arctonoë. Biol. Bull. Mar. Biol. Lab., Woods Hole, 98, 8193.CrossRefGoogle ScholarPubMed
Davenport, D., 1955. Specificity and behaviour in symbioses. Q. Rev. Biol, 30, 2946.CrossRefGoogle ScholarPubMed
Dobzhansky, T. and Spassky, B., 1962. Selection for geotaxis in monomorphic and polymorphic populations of Drosophila pseudoobscura. Proc. Natn. Acad. Sci. U.S.A., 48, 17041712.CrossRefGoogle ScholarPubMed
Dobzhansky, T. and Spassky, B., 1967. Effects of selection and migration of geotactic and phototactic behaviour of Drosophila I. Proc. Roy. Soc, B, 168, 2747.Google Scholar
Dobzhansky, T., Spassky, B and Sved, J, 1969. Effects of selection and migration on geotactic and phototactic behaviour of Drosophila II.Proc. Roy. Soc, B, 173, 191207.Google Scholar
Elton, G. E., 1927. Animal Ecology. London: Sidgwick and Jackson.Google Scholar
Engelmann, T. W., 1882. Uber Licht und Farbenperception neiderster Organismen. Pflügers Arch. Ges. Physiol, 29, 387400.CrossRefGoogle Scholar
Engelmann, T. W., 1883. Bacterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinnes. Pflügers Arch. Ges. Physiol., 30, 95124.CrossRefGoogle Scholar
Fasten, N., 1913. The behaviour of a parasitic copepod, Lernaeopoda edwardsii Olsson.J. Anim. Behav., 3, 3660.CrossRefGoogle Scholar
Gabbott, P. A. and Larman, V. N., 1971. Electrophoretic examination of partially purified extracts of Balanus balanoides containing a settlement inducing factor, 143–153. In 4th Eur. Mar. Biol. Symp. (Ed. Crisp, D. J..) Cambridge University Press.Google Scholar
Gray, J. S., 1965. The behaviour of Protodrilus symbioticus (Giard) in temperature gradients.J. Anim. Ecol, 34, 455461.CrossRefGoogle Scholar
Harder, W., 1968. Reactions of planktonic organisms to water stratification. Limnol. Oceanogr., 13, 156168.CrossRefGoogle Scholar
Jennings, H. S., 1899. Studies on reactions to stimuli in unicellular organisms. II. The mechanism of the motor reactions of Paramecium. Am. J. Physiol., 2, 311341.CrossRefGoogle Scholar
Jennings, H. S., 1904. Contributions to the study of the behaviour of lower organisms. Publs Carnegie Instn, 16.Google Scholar
Jennings, H. S., 1907. Behaviour of the starfish, Asterias forreri de Loriol. Univ. Calif. Publs Zool, 4, 53185.Google Scholar
Knight-Jones, E. W., 1951. Gregariousness and some other aspects of the setting behaviour of Spirorbis. J. Mar. Biol. Ass. U.K., 30, 201222.CrossRefGoogle Scholar
Knight-Jones, E. W. and Morgan, E., 1966. Responses of marine animals to changes in hydrostatic pressure. Oceanogr. Mar. Biol. Ann. Rev., 4, 267299.Google Scholar
Lack, D., 1933. Habitat selection in birds with special reference to the effects of afforestation on the Breckland avifauna. J Anim. Ecol, 2, 239262.CrossRefGoogle Scholar
Lack, D., 1937. The psychological factor in bird distribution. Br. Birds, 31, 130136.Google Scholar
Lack, D., 1940. Habitat selection and speciation in birds.Br. Birds, 34, 8084.Google Scholar
Lack, D., 1949. The significance of ecological isolation. In Genetics, Paleontology and Evolution. (Eds.Jepson, Mayr and Simpson, .) Princeton University Press.Google Scholar
Lindroth, C. H., 1953. Some attempts toward experimental zoogeography. Ecology, 34, 657666.CrossRefGoogle Scholar
Loeb, J., 1893. Uber Künstliche Umwandlung positiv heliotropischer Thiere in negativ heliotropische und umgekehrt. Pflügers Arch. Ges. Physiol, 54, 81107.CrossRefGoogle Scholar
Lucas, C. E., 1947. The ecological effects of external metabolities. Biol. Rev., 22, 270295.CrossRefGoogle Scholar
Massart, J., 1889. Sensibilité et adaptation des organismes à la concentration des solutions salines. Archs Biol, Paris, 9, 515570.Google Scholar
Massart, J., 1891a. Recherches sur la organismes inferieurs. II. La sensibilite a la concentration chez les etres unicellulaires marins. Bull. Acad. Roy. Belg. (Sci.), 22, 148158.Google Scholar
Massart, J., 1891b. III. La sensibilité a la gravitation. Bull. Acad. Roy. Belg. (Sci.), 22, 158167.Google Scholar
Maxwell, S. S., 1897. Beiträge zur Gehirnphysiologie der Anneliden. Pflügers Arch. Ges. Physiol., 67, 263297.CrossRefGoogle Scholar
McEwan, R. S., 1918. The reactions to light and to gravity in Drosophila and its mutants.J Exp. Zool, 25, 49105.CrossRefGoogle Scholar
Meadows, P. S. and Anderson, J. G., 1968. Micro-organisms attached to marine sand grains. J. Mar. Biol. Ass. U.K., 48, 161175.CrossRefGoogle Scholar
Meadows, P. S. and Campbell, J. I., 1972. Habitat selection by aquatic invertebrates. Adv. Mar. Biol., 10, in press.CrossRefGoogle Scholar
Meadows, P. S. and Williams, G. B., 1963. Settlement of Spirorbis borealis (Daudin) larvae on surfaces bearing films of micro-organisms. Nature, Lond., 198, 610611.CrossRefGoogle Scholar
Mendelssohn, M., 1902. Quelques considérations sur la nature et la rôle biologie de la thermotaxie. J. Physiol. Path. Gén., 4, 489496.Google Scholar
Mitsukuri, K., 1901. Negative phototaxis and other properties of Littorina in determining its habitat. Annotnes Zool. Jap., 4, 119.Google Scholar
Moynihan, M., 1968. The ‘Coerebini’: a group of marginal areas, habitats, and habits. Am. Nat., 102, 573581.CrossRefGoogle Scholar
Nonaka, M., 1966. Experiments on the habitat selection of the Japanese spiny lobster. Bull. Jap. Soc. Scient. Fish., 38, 630638.CrossRefGoogle Scholar
Russell, F. S., 1927. The vertical distribution of plankton in the sea. Biol. Rev., 2, 213262.CrossRefGoogle Scholar
Ryan, E. P., 1966. Pheromone: evidence in a decapod crustacean. Science N.Y., 151, 340341.CrossRefGoogle Scholar
Ryland, J. S., 1959. Experiments on the selection of algal substrates by polyzoan larvae.J. Exp. Biol, 36, 613631.CrossRefGoogle Scholar
Simpson, J. H. and Woods, J. D., 1970. Temperature microstructure in a fresh water thermocline. Nature, Lond., 226, 832835.CrossRefGoogle Scholar
Snyder, N. F. R. and Snyder, H. A., 1971. Pheromone-mediated behaviour of Fasciolaria tulipa. Anim. Behav., 19, 257268.CrossRefGoogle Scholar
Thorpe, W. H. and Jones, F. G. W., 1937. Olfactory conditioning in a parasitic insect and its relation to the problem of host selection.Proc. Roy. Soc, B, 124, 5681.Google Scholar
Webb, J. E. and Hill, M. B., 1958. The ecology of Lagos lagoon. IV. On the reactions of Branchiostoma nigeriense Webb to its environment. Phil. Trans. Roy. Soc, B, 241, 355391.Google Scholar
Wecker, S. C, 1963. The role of early experience in habitat selection by the Prairie deer mouse, Peromyscus maniculatus Bairdi. Ecol. Monogr., 33, 307325.CrossRefGoogle Scholar
Welsh, J. H.,1930. Reversal of phototropism in a parasitic water mite. Biol. Bull. Mar. Biol. Lab., Woods Hole, 59, 165169.CrossRefGoogle Scholar
Welsh, J. H., 1931. Specific influence of the host on the light responses of parasitic water mites. Biol. Bull. Mar. Biol. Lab., Woods Hole, 61, 497499.CrossRefGoogle Scholar
Wieser, W., 1956. Factors influencing the choice of substratum in Cumella vulgaris Hart (Crustacea, Cumacea). Limnol. Oceanogr., 1, 274285.CrossRefGoogle Scholar
Williams, A. B., 1958. Substrates as a factor in shrimp distribution. Limnol. Oceanogr., 3, 283290.CrossRefGoogle Scholar
Williams, G. B., 1964. The effect of extracts of Fucus serratus in promoting the settlement of larvae of Spirorbis borealis (Polychaeta). J.Mar. Biol. Ass. U.K., 44, 397414.CrossRefGoogle Scholar
Wilson, D. P., 1928. The larvae of Polydora ciliata Johnston and Polydora hoplura Claparéde. J. Mar. Biol. Ass. U.K., 15, 567602.CrossRefGoogle Scholar
Wilson, D. P., 1958. Some problems in larval ecology related to the localized distribution of bottom animals. In Perspectives in Marine Biology. (Ed. Buzzati-Traverso, .)University of California Press.Google Scholar
Wilson, D. P., 1970. The larvae of Sabellaria spinulosa and their settlement behaviour.J. Mar. Biol. Ass. U.K., 50, 3352.CrossRefGoogle Scholar
Wolsky, A. and Huxley, J. S., 1932. The reactions of normal and mutant types of Gammarus chevreuxi to light. J. Exp. Biol., 9, 427440.CrossRefGoogle Scholar