Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:57:54.229Z Has data issue: false hasContentIssue false

Genetic engineering for stress tolerance in the Triticeae

Published online by Cambridge University Press:  05 December 2011

B. P. Forster
Affiliation:
Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
Get access

Synopsis

Genetic variation within a crop species is often limited and restricts improvement by conventional breeding methods. This is particularly true for environmental stresses, both biotic and abiotic. Wild relatives of crop plants, however, provide a rich source of novel variation which can be introduced into the crop. Many alien genes for biotic stress resistance have already been introduced into crops; in contrast, the genetic control of abiotic stress tolerance is poorly understood. Genetic engineering of abiotic stress tolerance in the Triticeae is the main subject discussed here with particular reference to salt tolerance in wheat and barley. Methods of alien gene transfer, including locating tolerance genes and restructuring chromosomes, are described. One of the major limitations in transferring genes for stress tolerance is the lack of good tests for resistance or tolerance which is largely due to the fact the physiological mechanisms involved are not fully understood. Genetic markers provide a new opportunity of detecting chromosome segments carrying desired genes easily and efficiently, and these will become increasingly important as the genetic maps of crop species are expanded. Although many stress genes have been located to specific chromosomes, and some have been mapped intra-chromosomally and their dominance relations determined, there is a great lack of knowledge of the control of these genes at the molecular level. Molecular studies of this type are difficult, but it is anticipated that the limitations will be overcome in the near future.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Elenin, R. A., Heakal, M. S., Gomaa, A. S. & Moseman, J. G. 1981. Studies on salt-tolerance in barley and wheat: II. Sources of tolerance in barley germplasm. Barley Genetics IV, Proceedings of the Fourth Barley Genetics Symposium, Edinburgh, U.K. pp. 402–9.Google Scholar
Allard, R. W. & Shands, R. G. 1954. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevi. Phytopaphology 44, 266–74.Google Scholar
Alonso, L. C. & Kimber, G. 1980. A hybrid between diploid Agropyron junceum and Triticum aestivum. Cereal Research Communication 8, 355–8.Google Scholar
Anamthawat-Jonsson, K., Schwarzacher, T., Leitch, A. R., Bennett, M. D. & Heslop-Harrison, J. S. 1990. Discrimination between closely related Triticeae species using genomic DNA as a probe. Theoretical and Applied Genetics 79, 721–8.CrossRefGoogle ScholarPubMed
Aniol, A. & Gustafson, P. J. 1984. Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26, 701–5.CrossRefGoogle Scholar
Bennett, M. D., Finch, R. A. & Barclay, I. R. 1976. The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54, 175200.CrossRefGoogle Scholar
Cahalan, C. & Law, C. N. 1979. The genetical control of cold resistance and vernalization requirement in wheat. Heredity 42, 125–32.CrossRefGoogle Scholar
Cauderon, Y. 1979. Use of Agropyron species for wheat improvement. Proceedings of the Conference on Broadening the Genetic Base of Crops, pp. 175–86. Wageningen: Pudoc.Google Scholar
Charnock, A. 1988. Plants with a taste for salt. New Scientist, 3rd December, 41–5.Google Scholar
Chojecki, J., Barnes, S. & Dunlop, A. 1989. A molecular marker for vernalisation requirement in barley. In Development and Application of Molecular Markers to Problems in Plant Genetics, Current Communication in Molecular Biology pp. 145–8, eds Helentjaris, T. & Burr, B.: Cold Spring Harbour Laboratory, USA.Google Scholar
Cooper, K. V., Dale, J. E., Dyer, A. F., Lyne, R. L. & Walker, J. T. 1978. Hybrid plants from the barley × rye cross. Plant Sciences Letters 12, 293–8.CrossRefGoogle Scholar
Dennis, E., Gerlach, W. L., Pryor, A. J., Bennetzen, J. L., Inglis, A., Llewellyn, D., Sachs, M. M., Ferl, R. J. & Peacock, W. J. 1984. Molecular analysis of the alcohol dehydrogenase (Adhl) gene of maize. Nucleic Acids Research 12, 39834000.CrossRefGoogle Scholar
D'Ovidio, R., Tanzarella, O. A. & Porceddu, E. 1990. Rapid and efficient detection of genetic polymorphism in wheat through amplification by polymerase chain reaction. Plant Molecular Biology 15, 169–71.CrossRefGoogle ScholarPubMed
Dunn, M. A., Hughes, M. A., Pearce, R. S. & Jack, P. L. 1990. Molecular characterisation of barley gene induced by cold treatment. Journal of Experimental Botany 41, 1405–13.CrossRefGoogle Scholar
Dvořák, J. 1977. Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Canadian Journal of Genetics and Cytology 19, 133–41.CrossRefGoogle Scholar
Dvořák, J. & Knott, D. R. 1973. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Canadian Journal of Genetics and Cytology 16, 399417.CrossRefGoogle Scholar
Dvořák, J. & Ross, K. 1986. Expression and tolerance of Na, K, Mg, Cl and SO and sea water in the amphiploid of Triticum aestivum × Elytrigia elongata. Crop Science 26, 658–60.CrossRefGoogle Scholar
Dvořák, J. & Sosulski, F. W. 1974. Effect of additions and substitutions of Agropyron elongatum chromosomes on quantitative characters in wheat. Canadian Journal of Genetics and Cytology 16, 627–37.CrossRefGoogle Scholar
Dvořák, J., Edge, M. & Ross, K. 1988. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proceedings of the National Academy of Science, USA 85, 3805–9.CrossRefGoogle ScholarPubMed
Ellis, R. P., Forster, B. P., Thomas, W. T. B. & Nevo, E. 1991. The use of Hordeum spontaneum Koch in barley improvement. Proceedings of the Sixth Barley Genetic symposium, Sweden, pp. 65–7.Google Scholar
Epstein, E., Kingsbury, R. W., Norlyn, J. D. & Rush, D. W. 1979. An approach to utilisation of underexploited resources. In The biosaline concept, pp. 77–9, ed. Hollaender, A. New York: Plenum.CrossRefGoogle Scholar
Falk, D. E. & Kasha, K. J. 1981. Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat. (Triticum aetivum). Canadian Journal of Genetics and Cytology 23, 81–8.CrossRefGoogle Scholar
Farooq, S., Niazi, M. L. K., Igbal, N. & Shah, T. M. 1989. Salt tolerance potential of wild resources of the tribe Triticeae II. Screening of species of Aegilops. Plant and Soil 119, 255–60.CrossRefGoogle Scholar
Fedak, G. 1980. Production, morphology, and meiosis of reciprocal barley–wheat hybrids. Canadian Journal of Genetics and Cytology 24, 117–23.CrossRefGoogle Scholar
Fedak, G. 1985. Alien species as sources of physiological traits for wheat improvement. Euphytica 34, 673–80.CrossRefGoogle Scholar
Fedak, G. 1992. Intergeneric hybrids with Hordeum. In Barley: genetics, biochemistry, molecular biology and biotechnology, chapter 3, ed. Shewry, P. R. Wallingford: C.A.B. International.Google Scholar
Feuerstein, U., Brown, A. H. D. & Burdon, J. J. 1990. Linkage of rust resistance genes from wild barley (Hordeum spontaneum) with isozyme markers. Plant Breeding 104, 318–24.CrossRefGoogle Scholar
Forster, B. P. & Miller, T. E. 1985. A 5B deficient hybrid between Triticum aestivum and Agropyron junceum. Cereal Research Communications 13, 93–5.Google Scholar
Forster, B. P., Gorham, J. & Miller, T. E. 1987. Salt tolerance of an amphiploid between Triticum aestivum and Agropyron junceum. Plant Breeding 98, 18.CrossRefGoogle Scholar
Forster, B. P., Miller, T. E. & Law, C. N. 1988. Salt tolerance of two wheat/Agropyron junceum disomic addition lines. Genome 30, 559–64.CrossRefGoogle Scholar
Forster, B. P., Phillips, M. S., Miller, T. E., Baird, E. & Powell, W. 1990. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65, 99107.CrossRefGoogle Scholar
Forster, B. P., Thompson, D. M., Watter, J. & Powell, W. 1991. Water-soluble proteins of mature barley endosperm: genetic control, polymorphism, and linkage with β-amylase and spring/winter habit. Theoretical and Applied Genetics 81, 787–92.CrossRefGoogle ScholarPubMed
Gale, M. D. & Miller, T. E. 1987. The introduction of alien genetic variation into wheat. In wheat breeding its scientific basis, pp. 173210, ed. Lupton, F. G. H. London, New York: Chapman and Hall.CrossRefGoogle Scholar
Gorham, J., Budrewicz, E. & Wyn Jones, R. G. 1985. Salt tolerance in the Triticeae: Growth and solute accumulation in leaves of Thinopyrum bessarabicum. Journal of Experimental Botany 36, 1021–31.CrossRefGoogle Scholar
Gorham, J., Forster, B. P., Budrewicz, E., Wyn Jones, R. G., Miller, T. E. & Law, C. N. 1986. Salt tolerance in the Triticeae: Salt accumulation and distribution in an amphiploid derived from Triticum aestivum cv Chinese Spring and Thinopyrum bessarabicum. Journal of Experimental Botany 37, 1435–49.CrossRefGoogle Scholar
Gorham, J., Hardy, C., Wyn Jones, R. G., Joppa, L. R. & Law, C. N. 1987. Chromosome location of K/Na discrimination character in the D genome of wheat. Theoretical and Applied Genetics 74, 584–8.CrossRefGoogle Scholar
Greenway, H. & Munns, R. 1980. Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31, 149–90.CrossRefGoogle Scholar
Gregory, R. S. 1987. Triticale breeding. In Wheat breeding its scientific basis, pp. 269–86, ed. Lupton, F. G. H. London, New York: Chapman and Hall.CrossRefGoogle Scholar
Gulick, P. & Dvořák, J. 1987. Gene induction and repression by salt treatment in roots of salinity sensitive Chinese Spring wheat and the salinity tolerant Chinese Spring × Elytrigia elongata amphiploid. Proceedings of the National Academy of Science, USA 74, 99103.CrossRefGoogle Scholar
Haour-Lurton, B. & Planchon, C. 1985. Role of D genome chromosomes in photosynthesis expression in wheats. Theoretical and Applied Genetics 69, 443–6.CrossRefGoogle ScholarPubMed
Hurkman, W. J., Fornari, C. S. & Tanaka, C. K. 1989. A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt tolerant and a salt sensitive cultivar of barley. Plant Physiology 90, 1444–56.CrossRefGoogle Scholar
Islam, A. K. M. R., Shepherd, K. W. & Sparrow, D. H. B. 1978. Production and characterization of wheat: barley addition lines. Proceedings of the Fifth International Wheat Genetics Symposium, New Delhi, India, pp. 420–6.Google Scholar
Islam, A. K. M. R., Shepherd, K. W. & Sparrow, D. H. B. 1981. Isolation and characterization of euplasmic wheatbarley chromosome addition lines. Heredity 46, 161–74.CrossRefGoogle Scholar
Jacobsen, T. & Adams, R. M. 1958. Salt and silt in ancient Mesopotamian agriculture. Science 128, 1251–8.CrossRefGoogle ScholarPubMed
Jacobsen, N. & von Bothmer, R. 1981. Interspecific hybridization in the genus Hordeum L. Barley Genetics IV, Proceedings of the Fourth Barley Genetics Symposium, Edinburgh, U.K. pp. 710–14.Google Scholar
Jahoor, A. & Fishbeck, G. 1987. Localization of resistance genes against powdery mildew in Hordeum spontaneum C. Koch. Barley Genetics, V. Proceedings of the Fifth Barley Genetics Symposium, Okayama, Japan, pp. 679–83.Google Scholar
Jana, Y. C., Jana, S. & Acharya, S. N. 1980. Salt tolerance in heterogeneous populations of barley. Euphytica 29, 409417.CrossRefGoogle Scholar
Kasha, K. J. 1974. Haploids from somatic cells. In Haploids in higher plants. Advances and potential, pp. 6787, ed. Kasha, K. J. University of Guelph, Canada.Google Scholar
Kingsbury, R. W. & Epstein, E. 1984. Selection for salt-tolerant spring wheat. Crop Science 24, 310–15.CrossRefGoogle Scholar
Knott, D. R. 1968. Agropyrons as a source of rust resistance in wheat breeding. Proceedings of the third International Wheat Genetics Symposium, Canberra, Australia, eds Finlay, K. W. & Shepherd, K. W. pp. 204–12.Google Scholar
Koebner, R. M. D. & Shepherd, K. W. 1986. Controlled introgression to wheat of genes from rye chromosome IRS by induction of allosyndesis I. Isolation of recombinants. Theoretical and Applied Genetics 73, 197208.CrossRefGoogle Scholar
Kruse, A. 1967. Intergeneric hybrids between Hordeum vulgare L. sp disticum (v. Pallas, 2n= 14) and Secale cereals L. (v. Petkus, 2n= 14). Vet-og Land Bohojst, Årsskrft (year book), pp. 82902.Google Scholar
Larkin, P. J., Spindler, L. H. & Banks, P. M. 1990. Cell culture of alien chromosome addition lines to induce somatic recombination and gene introgression. In Progress in plant cellular and molecular biology, pp. 163–68, eds Nijkamp, H. J. J., van der Plas, L. H. W. & van Aartrijk, K. Dordrecht, Boston, London: Kluwer Academic.CrossRefGoogle Scholar
Law, C. N. & Jenkins, G. 1970. A genetic study of cold resistance in wheat. Genetical Research, Cambridge 15, 197208.CrossRefGoogle Scholar
Law, C. N., Fayne, P. I., Worland, A. J., Miller, T. E., Harris, P. A., Snape, J. W. & Reader, S. M., 1984. Cereal grain protein improvement. International Atomic Energy Agency, Vienna, pp. 279300.Google Scholar
Law, C. N., Snape, J. W. & Worland, A. J. 1987. Aneuploidy in wheat and its uses in genetic analysis. In Wheat breeding its scientific basis, pp. 71108, ed. Lupton, F. G. H. London, New York: Chapman and Hall.CrossRefGoogle Scholar
Law, C. N., Worland, A. J. & Giorgi, B. 1975. The genetic control of ear emergence time by chromosomes 5A and 5D of wheat. Heredity 36, 4958.CrossRefGoogle Scholar
Liang, G. H., Wang, R. C., Niblett, C. L. & Heyne, E. G. 1979. Registration of B-6–37–1 wheat germplasm. Registration of Germplasm, Crop Science 19, 421.Google Scholar
Linde–Laursen, I. & von Bothmer, R. 1984. Somatic cell cytology of the chromosome-eliminating, intergeneric hybrid Hordeum vulgare × Psathyrostachys fraglis. Canadian Journal of Genetics and Cytology 26, 436–44.CrossRefGoogle Scholar
Maia, N. 1967. Obtention de Blés tendres résistants au Piétin-verse (Cercosporella herpotrichoides) par croisements interspecifiques. C. R. Séanc Académic d' Agriculture, France 53, 149–54.Google Scholar
Manyowa, N. M. 1989. The genetics of aluminium, excess boron, copper and manganese stress tolerance in the tribe Triticeae and its implication for wheat improvement. PhD thesis, University of Cambridge U.K.Google Scholar
Manyowa, N. M., Miller, T. E. & Forster, B. P. 1988. Alien species as sources for aluminium tolerance genes for wheat (Triticum aestivum). Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge, U.K., pp. 851–7, eds Miller, T. E. & Koebner, R. M. D. Cambridge: Cambridge University Press.Google Scholar
McIntosh, R. A. 1988. Catalogue of gene symbols for wheat. Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge, U.K., pp. 1225–324, eds Miller, T. E. & Koebner, R. M. D. Cambridge: Cambridge University Press.Google Scholar
Mettin, D., Bluethner, W. D. & Weinbrich, M. 1973. Studies on the nature and the possible origin of the spontaneously translocated 1B-1R chromosome in wheat. Wheat Information Service 47/48, 1216.Google Scholar
Miller, T. E. 1987. Systematics and evolution. In Wheat breeding its scientific basis, pp. 130, ed. Lupton, F. G. H. London, New York: Chapman and Hall.Google Scholar
Moseman, J. G., Baenziger, P. S. & Kilpatrick, R. A. 1981. Genes conditioning resistance of Hordeum sponateum to Erysiphe graminis f.sp. hordei. Crop Science 21, 229–32.CrossRefGoogle Scholar
Munns, R., Schachtman, D. P., Lagudah, E. S. & Appels, R. 1990. Improving salt tolerance in wheat – a combined physiological and genetic approach. Proceedings of the International Symposium on Molecular and Genetic Approaches to Plant Stress, ICGEB, New Delhi, India, pp. 30.130.2.Google Scholar
Nagao, R. T., Kimpel, J. A. & Key, J. L. 1990. Molecular and cell biology of the heat–shock response. In Genomic responses to environmental stress, advances in genetics, pp. 235–74, vol. 28, ed. Scandalios, J. G. San Diego, California: Academic Press.CrossRefGoogle Scholar
Nevo, E., Beiles, A. & Zohary, D. 1986. Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biological Journal of the Linnaeus Society 27, 355–80.CrossRefGoogle Scholar
Okamoto, M. 1957. Asynaptic effect of chromosome V. Wheat Information Service 5, 6.Google Scholar
Omara, M. K., Abel-Rahman, K. A. & Hussein, M. Y. 1987. Selection for salt stress tolerance in barley. Assiut Journal of Agriculture Science 18, 199218.Google Scholar
Paull, J. G., Rathjen, A. J. & Cartwright, B. 1988. Genetic control of tolerance to high concentration of boron in wheat. Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge, U.K., pp. 871–7, eds Miller, T. E. & Koebner, R. M. D. Cambridge: Cambridge University Press.Google Scholar
Polle, E., Konzak, C. E. & Kiottricki, J. A. 1978. Rapid screening of wheat for tolerance to Al in breeding varieties better adapted to acid soils. Agricultural Technology for Developing Countries, Technology Series Bulletin 21. Washington: AID.Google Scholar
Poysa, V. W. 1984. The genetic control of low temperature, ice-encasement, and flooding tolerances by chromosomes 5A, 5B and 5D in wheat. Cereal Research Communications 12, 34.Google Scholar
Prestes, A. M., Konzak, C. F. & Kittrick, J. A. 1975. An improved seedling culture method for screening wheat for tolerance to toxic levels of aluminium. Agronomy Abstracts 67, 60.Google Scholar
Quershi, R. H., Ahmad, R., Ilyas, M. & Aslam, Z. 1980. Screening wheat (Triticum aestivum) for salt tolerance. Pakistan Journal of Agricultural Science 17, 1925.Google Scholar
Quinke, F. L. 1940. Interspecific and intergeneric crosses with barley. Canadian Journal of Research 18, 372–3.CrossRefGoogle Scholar
Rajaram, S., Maan, C. L. E., Ortiz-Ferrara, G. & Mujeeb-Kazi, A. 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. Proceedings of the Sixth International Wheat Genetic Symposium, Kyoto, Japan, pp. 613621, ed. Saskomoto, S.Google Scholar
Ramagopal, S. 1987. Differential mRNA transcription during salinity stress in barley. Proceedings of the National Academy of Science, USA 84, 94–8.CrossRefGoogle ScholarPubMed
Rana, R. S. 1986. Evaluation and utilisation of traditionally grown cereal cultivars of salt affected areas in India. Indian Journal of Genetics 46 (suppl), 121–35.Google Scholar
Richards, R. A. 1983. Should selection for yield in saline regions be made on saline or non–saline soils? Euphytica 32, 431–8.CrossRefGoogle Scholar
Riley, R. & Chapman, V. 1967. The inheritance in wheat of crossability with rye. Genetical Research, Cambridge 9, 259–67.CrossRefGoogle Scholar
Riley, R., Chapman, V. & Johnson, R. 1968. The incorporation of disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genetical Research, Cambridge 12, 199219.CrossRefGoogle Scholar
Saline Agriculture: salt-tolerant plants for developing countries. National Academy Press, Washington, DC 1990.Google Scholar
Sayed, J. 1985. Diversity of salt tolerance in a germplasm collection of wheat (Triticum aestivum). Theoretical and Applied Genetics 69, 651–7.CrossRefGoogle Scholar
Scarth, R., & Law, C. N. 1983. The location of the photoperiodic gene Ppd2 and an additional factor for ear emergence time on chromosome 2B of wheat. Heredity 51, 607–19.CrossRefGoogle Scholar
Schachtman, D. P., Munns, R. & Whitecross, M. I. 1991. Variation in Na exclusion and salt tolerance in Triticum tauschii (Coss) Schmal. Crop Science 31, 992–7.CrossRefGoogle Scholar
Sears, E. R. 1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Genetics in Plant Breeding, Brookhaven Symp Biol 2, 112.Google Scholar
Sears, E. R. 1973. Translocation through union of newly formed telocentric chromosomes. Proceedings of the thirteenth International Congress of Genetics, Berkeley, USA, Genetics (suppl) 2, 247.Google Scholar
Sears, E. R. 1977. An induced mutant with homoeologous pairing in common wheat. Canadian Journal of Genetics and Cytology 19, 585–93.CrossRefGoogle Scholar
Sethi, G. S., Finch, R. A. & Miller, T. E. 1986. A bread wheat (Triticum aestivum) × cultivated barley (Hordeum vulgare) hybrid with homoeologous chromosome pairing. Canadian Journal of Genetics and Cytology 28, 777–82.CrossRefGoogle Scholar
Shah, S. H., Gorham, J., Forster, B. P. & Wyn Jones, R. G. 1987. Salt tolerance in the Triticeae: The contribution of the D genome to cation selectivity in hexaploid wheat. Journal of Experimental Botany 38, 254–69.CrossRefGoogle Scholar
Smith, D. C. 1942. Intergeneric hybridization of cereals and other grasses. Journal of Agricultural Research 64, 123–96.Google Scholar
Stoner, R. 1988. Engineering a solution to the problem of salt-laden soils. New Scientist 3. December, 44.Google Scholar
Storey, R. & Wyn Jones, R. G. 1987. Salt stress and comparative physiology in the Gramineae. I. Ion relations in two salt- and water-stressed barley cultivars, California Mariout and Arimar. Australian Journal of Plant Physiology 5, 801–16.Google Scholar
Sutka, J. 1981. Genetic studies of frost resistance in wheat. Theoretical and Applied Genetics 54, 145–52.CrossRefGoogle Scholar
Sutka, J., Rajki, E. 1979. A cytogenetic study of frost tolerance in the winter wheat variety ‘Rannyaya 12’ by F2 monosomic analysis. Cereal Research Communications 7, 281–8.Google Scholar
Swanston, J. S. 1987. The consequences, for malting barley, of Hordeum laevigatum as a source of mildew resistance in barley breeding. Annals of Applied Biology 110, 351–5.CrossRefGoogle Scholar
Taeb, M., Koebner, R. M. D., Forster, B. P. & Law, C. N. 1991. Adaptive effects of genes for vernalization and photoperiod requirement on salinity tolerance of wheat (Triticum aestivum L.). Plant and Cell Environment (submitted).Google Scholar
Thomas, W. T. B., Asher, M. J. C., Swanston, J. S. & Thomas, C. E. 1988. The transfer of resistance to powdery mildew from Hordeum spontaneum to barley cv. Golden Promise. In Cereal breeding related to integrated cereal production, pp. 200–4, eds Jorna, M. L. & Slootmaker, L. A. J. Wageningen: Pudoc.Google Scholar
von Krolow, K-D. 1970. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Zeitschrift für Pflanzenzüchtung 64, 4472.Google Scholar
von Wettstein-Knowles, P. 1992. Cloned and mapped genes: current status. In Barley: genetics, biochemistry, molecular biology and biotechnology, chapter 4, ed Shewry, P. R. Wallingford: C.A.B. International.Google Scholar
Wang, R. R-C. & Hsiao, C. 1989. Genome relationship between Thinopyrum bessarabicum and Thinopyrum elongatum: revisited. Genome 32, 802–9.CrossRefGoogle Scholar
Worland, A. J., Law, C., Hollins, T. W., Koebner, R. M. D. & Giura, A. 1988. Location of a gene for resistance to eyespot (Pseudocercosporella herpotrichoides) on chromosome 7D of bread wheat. Plant Breeding 101, 4351.CrossRefGoogle Scholar
Wyn Jones, R. G., Gorham, J. & McDonnell, E. 1984. Organic and inorganic solute contents as a selection criteria for salt tolerance in the Triticeae. In Salinity tolerance in plants, pp. 189203, eds Staples, R. C. & Toenniessen, G. H. New York, Chichester: John Wiley and Sons.Google Scholar
Ye, J. M., Kao, K. N., Harvey, B. L. & Rossnagel, B. G. 1987. Screening salt-tolerant barley genotypes via F1 anther culture in salt stress media. Theoretical and Applied Genetics 74, 426–29.CrossRefGoogle ScholarPubMed
Zeller, F. J. 1973. 1B/1R wheat-rye chromosome substitution and translocations. Proceedings of the Fourth International Wheat Genetics Symposium, University of Columbia, U.S.A., pp. 209–21.Google Scholar