Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:07:34.432Z Has data issue: false hasContentIssue false

Effects of oestrogen on human breast cancer cells in culture

Published online by Cambridge University Press:  05 December 2011

Philippa D. Darbre
Affiliation:
Cellular Endocrinology Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, U.K.
Roger J. Daly
Affiliation:
Cellular Endocrinology Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, U.K.
Get access

Synopsis

Oestrogen regulates the growth of human breast cancer cell lines ZR-75–1, T-47-D and MCF-7 (KO and McGrath). Basal cell growth can be reduced (T-47-D) or eliminated (ZR-75–1) by prior growth in the absence of steroid and phenol red for three weeks, demonstrating that oestrogens can have long-lasting effects on cells in culture (termed “steroid memory”). Effects of oestradiol on different cell biological parameters are described and interaction with other steroids and serum growth factors is discussed. Antioestrogen action in these cell lines is affected by at least five parameters: (1) presence of phenol red, (2) time in culture, (3) cell density, (4) antioestrogen concentration, (5) steroid memory.

An in vitro model for loss of oestrogen sensitivity in breast cancer is presented. Both dependent (ZR-75–1) and responsive (T-47-D) cells lose oestrogen sensitivity when deprived of steroid in the long term but show a gradual increase in growth. For ZR-75–1 cells, the effects appear to be clonal but occur at a high frequency (about 1 in 1,000 cells). Parallel alterations in sensitivity to other steroids, antioestrogens and serum growth factors are shown. Molecular markers of this action are described and the results compared with the well-established model for loss of androgen/glucocorticoid sensitivity in SI 15 cells.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthois, Y., Katzenellenbogen, J. A. & Katzenellenbogen, B. S. 1986. Phenol red in tissue culture media is a weak estrogen – implications concerning the study of estrogen-responsive cells in culture. Proceedings of the National Academy of Sciences of the U.S.A. 83, 24962500.CrossRefGoogle Scholar
Brown, A. M. C., Jeltseh, J. M., Roberts, M. & Chambon, P. 1984. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proceedings of the National Academy of Sciences of the U.S.A. 81, 63446348.CrossRefGoogle ScholarPubMed
Darbre, P., Yates, J., Curtis, S. & King, R. J. B. 1983. Effect of estradiol on human breast cancer cells in culture. Cancer Research 43, 349354.Google ScholarPubMed
Darbre, P., Curtis, S. & King, R. J. B. 1984. Effects of estradiol and tamoxifen on human breast cancer cells in serum-free culture. Cancer Research 44, 27902793.Google ScholarPubMed
Darbre, P., Curtis, S. & King, R. J. B. 1984. Progression to steroid autonomy in SI 15 mouse mammary tumor cells: rôle of DNA methylation. Journal of Cell Biology 99, 14101415.CrossRefGoogle Scholar
Darbre, P., Curtis, S. & King, R. J. B. 1987a. Differential effects of steroid hormones on parameters of cell growth. Cancer Research 47, 29372944.Google ScholarPubMed
Darbre, P., Curtis, S. & King, R. J. B. 1987b. Interaction of different steroid hormones during progression of tumour cells to steroid autonomy. International Journal of Cancer 40, 802806.CrossRefGoogle ScholarPubMed
Darbre, P., Curtis, S. & King, R. J. B. 1987c. Progression to steroid insensitivity can occur irrespective of the presence of functional steroid receptors. Cell 51, 521528.CrossRefGoogle ScholarPubMed
Darbre, P., Curtis, S. & King, R. J. B. 1988. Steroid hormone regulation of cultured breast cancer cells. In Breast Cancer. Cellular and Molecular Biology, eds. Lippman, M. E. & Dickson, R., pp. 307341. Boston: Kluwer Academic Press.CrossRefGoogle Scholar
Dickson, R. B. & Lippman, M. E. 1986. Hormonal control of human breast cancer cell lines. Cancer Surveys 5, 617624.Google ScholarPubMed
Engel, L. W., Young, N. A., Tralka, T. S., Lippman, M. E., O'Brien, S. J. & Joyce, M. J. 1978. Establishment and characterisation of three new continuous cell lines derived from human breast carcinomas. Cancer Research 38, 33523364.Google ScholarPubMed
Foulds, L. 1969. Neoplaslic Development, Vol. I, pp. 5456. New York: Academic Press.Google Scholar
Glover, J. F., Irwin, J. T. & Darbre, P. D. 1988. Interaction of phenol red with estrogenic and antiestrogenic action on growth of human breast cancer cells ZR-75-1 and T-47-D. Cancer Research 48, 36933697.Google ScholarPubMed
Glover, J. F. & Darbre, P. D. 1989. Multihormone regulation of MMTV-LTR in transfected T-47-D human breast cancer cells. Journal of Steroid Biochemistry (in press).CrossRefGoogle Scholar
Holliday, R. 1987. The inheritance of epigenetic defects. Science 238, 163170.CrossRefGoogle ScholarPubMed
Horwitz, K. B. & McGuire, W. L. 1978. Estrogen control of progesterone receptor in human breast cancer. Journal of Biological Chemistry 253, 22232228.CrossRefGoogle ScholarPubMed
Jordan, V. C. (ed.) 1986. Estrogen/antiestrogen action and breast cancer therapy. Madison: University of Wisconsin Press.Google Scholar
Katzenellenbogen, B. S., Kenda, K. L., Norman, M. J. & Berthois, Y. 1987. Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Research 47, 43554360.Google ScholarPubMed
Keydar, I., Chen, L., Karyby, S., Weiss, F. R., DeLarea, J., Radu, M., Chaitcik, S. & Brenner, H. J. 1979. Establishment and characterisation of a cell line of human breast carcinoma origin. European Journal of Cancer 15, 659670.CrossRefGoogle ScholarPubMed
Knabbe, C., Lippman, M. E., Wakefield, L. M., Flanders, K. C., Kasid, A., Derynck, R. & Dickson, R. B. 1987. Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48, 417428.CrossRefGoogle ScholarPubMed
Leung, B. S. (ed.) 1982. Hormonal Regulation of Mammary Tumours, Vols. I and II. Montreal: Eden Press.CrossRefGoogle Scholar
Lippman, M. E. 1985. Endocrine responsive cancers of man. In Textbook of Endocrinology, ed. Williams, R. H., pp. 13091326. Philadelphia: W. B. Saunders Co.Google Scholar
Lippman, M. E., Dickson, R. B. (eds.) 1988. Breast Cancer: Cellular and Molecular Biology. Boston: Kluwer Academic Press.CrossRefGoogle Scholar
Masiakowski, P., Breathnach, R., Bloch, J., Gannon, F., Krust, A. & Chambon, P. 1982. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell lines. Nucleic Acids Research 10, 78957903.CrossRefGoogle Scholar
May, F. E. B. & Westley, B. R. 1987. Effects of tamoxifen and 4-hydroxytamoxifen on the pNR-1 and pNR-2 estrogen-regulated RNAs in human breast cancer cells. Journal of Biological Chemistry 262, 1589415899.CrossRefGoogle ScholarPubMed
Mclntosh, I. H. & Thynne, G. S. 1977. Tumor stimulation by antiestrogens. British Journal of Surgery 64, 900901.CrossRefGoogle Scholar
Osborne, C. K., Hobbs, K. & Trent, J. M. 1987. Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Research and Treatment 9, 111121.CrossRefGoogle ScholarPubMed
Plotkin, D., Lechner, J. J., Jung, W. E. & Rosen, P. J. 1978. Tamoxifen flare in advanced breast cancer. Journal of the American Medical Association 240, 26442646.CrossRefGoogle ScholarPubMed
Reddel, R. R. & Sutherland, R. L. 1984. Tamoxifen stimulation of human breast cancer cell proliferation in vitro: a possible model for tamoxifen tumour flare. European Journal of Cancer & Clinical Oncology 20, 14191424.CrossRefGoogle ScholarPubMed
Sapino, A., Pietribiasi, F., Bussolati, G. & Marchiso, P. C. 1986. Estrogen and tamoxifen induced rearrangement of cytoskeletal and adhesion structures in breast cancer MCF-7 cells. Cancer Research 46, 25262531.Google ScholarPubMed
Soto, A. M. & Sonnenschein, C. 1985. The rôle of estrogens on the proliferation of human breast tumor cells (MCF-7). Journal of Steroid Biochemistry 23, 8794.CrossRefGoogle ScholarPubMed
Sutherland, R. L., Green, M. D., Hall, R. E., Reddel, R. R. & Taylor, I. W. 1983a. Tamoxifen induces accumulation of MCF-7 human mammary carcinoma cells in the G0/G1 phase of the cell cycle. European Journal of Cancer & Clinical Oncology 19, 615621.CrossRefGoogle ScholarPubMed
Sutherland, R. L., Hall, R. E. & Taylor, I. W. 1983b. Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Research 43, 39984006.Google ScholarPubMed
Tormey, D. C., Lippman, M. E., Edwards, B.K. & Cassidy, J. G. 1983. Evaluation of tamoxifen doses with and without fluoxymesterone in advanced breast cancer. Annals of Internal Medicine 98, 139144.CrossRefGoogle ScholarPubMed
Vic, P., Vignon, F., Derocq, D. & Rochefort, H. 1982. Effect of oestradiol on the ultrastructure of the MCF-7 human breast cancer cells in culture. Cancer Research 42, 667673.Google Scholar
Vignon, F., Bouton, M. M. & Rochefort, H. 1987. Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochemical and Biophysical Research Communications 146, 15021508.CrossRefGoogle ScholarPubMed
Welshons, W. V. & Jordan, V. C. 1987. Adaptation of estrogen-dependent MCF-7 cells to low estrogen (phenol red-free) culture. European Journal of Cancer and Clinical Oncology 23, 19351939.CrossRefGoogle ScholarPubMed
Yates, J., Couchman, J. R. & King, R. J. B. 1980. Androgen effects on growth, morphology, and sensitivity of SI 15 mouse mammary tumor cells in culture. In Hormones and Cancer, Vol. 1, eds. Iacobelli, S., King, R. J. B., Lindner, H. R. & Lippman, M. E., pp. 3139. New York: Raven Press.Google Scholar