Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T10:58:41.432Z Has data issue: false hasContentIssue false

Defence mechanisms against production of free radicals in cells of ‘resurrection’ plants

Published online by Cambridge University Press:  05 December 2011

Cristina L. M. Sgherri
Affiliation:
Istituto di Chimica Agraria, Università di Pisa, Via S. Michele degli Scalzi, I-56124 Pisa, Italy
Mike F. Quartacci
Affiliation:
Istituto di Chimica Agraria, Università di Pisa, Via S. Michele degli Scalzi, I-56124 Pisa, Italy
Adriana Bochicchio
Affiliation:
Dipartimento di Agronomia e Produzione Erbacee, Università di Firenze, Piazzale delle Cascine 18, 1-50144 Firenze, Italy
Flavia Navari-Izzo
Affiliation:
Istituto di Chimica Quantistica ed Energetica Molecolare, C.N.R., Via Risorgimento 35, I-56126 Pisa, Italy
Get access

Extract

The ability of protoplasm to revive following severe water deficit is at its greatest in desiccation-tolerant or ‘resurrection’ plants. Boea hygroscopica is a resurrection plant that is able to survive air-dryness following slow dehydration (80% RH) in a physiological state called anabiosis (Schwab & Gaff 1990). However, this plant loses the ability to recover complete physiological activity following rapid water loss (0% RH).

The ability to recover complete physiological activity following repeated protoplasmic dehydration of fully differentiated tissues is an adaptation mechanism unique to resurrection plants.

Type
Short Communications
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology 113, 548–55.CrossRefGoogle ScholarPubMed
Anderson, J. V., Hess, J. L. & Chevone, B. I. 1990. Purification, characterization, and immunological properties for two isoforms of glutathione reductase from eastern white pine needles. Plant Physiology 94, 1402–9.CrossRefGoogle ScholarPubMed
Anderson, J. V., Chevone, B. I. & Hess, J. L. 1992. Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiology 98, 501–8.CrossRefGoogle ScholarPubMed
Bensadoun, A. & Weinstein, D. 1976. Assay of proteins in the presence of interfering materials. Analytical Biochemistry 70, 241–50.CrossRefGoogle ScholarPubMed
Burke, J. J., Gamble, P. E., Hatfield, J. L. & Quisenberry, J. E. 1985. Plant morphological and biochemical responses to field water deficit. I. Response of glutathione reductase activity and paraquat sensitivity. Plant Physiology 79, 415–9.CrossRefGoogle ScholarPubMed
Mondal, R. & Choudhuri, M. A. 1981. Role of hydrogen peroxide in senescence of excised leaves of rice and maize. Biochemie und Physiologie der Pftanzen 176, 700–9.CrossRefGoogle Scholar
Navari-Izzo, F., Sgherri, C. L. M. & Galleschi, L. 1992. Plasma-membrane proteins in water-stressed sunflower seedlings. Agricoltura Mediterranea 122, 306–12.Google Scholar
Schwab, K. B. & Gaff, D. F. 1990. Influence of compatible solutes on soluble enzymes from desiccationtolerant Sporobolus stapfianus and desiccation-sensitive Sporobolus pyramidalis. Journal of Plant Physiology 137, 208–15.CrossRefGoogle Scholar
Sgherri, C. L. M., Loggini, B., Puliga, S. & Navari-Izzo, F. 1993. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry (in press).Google Scholar
Wang, S. Y., Jiao, H. J. & Faust, M. 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiologia Plantarum 82, 231–6.CrossRefGoogle Scholar