Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-09T14:20:23.207Z Has data issue: false hasContentIssue false

Cytology of Betula alba L. complex

Published online by Cambridge University Press:  05 December 2011

I. R. Brown
Affiliation:
Department of Forestry, University of Aberdeen, Aberdeen AB9 2UU
D. A. Williams
Affiliation:
Department of Forestry, University of Aberdeen, Aberdeen AB9 2UU
Get access

Synopsis

The morphological variation between and within species of Betula has resulted in taxonomic confusion which chromosome studies have been aimed at reducing. The paper briefly reviews the general situation and summarizes recent work at Aberdeen.

Betula forms a polyploid series with chromosome numbers ranging from 2n = 28 to 2n = 84. The native British arborescent birches B. pendula and B. pubescens Ehrh. have respectively 2n = 28 and 2n = 56 chromosomes. Meiosis is essentially regular but many phenomena occur which may account for the production of gametes with non-haploid chromosome numbers. Variation in somatic chromosome number within the leaf tissues of both species is common and trees have been identified whose modal chromosome counts lie between 28 and 56. Some of these trees are of hybrid origin while others may aneuploid B. pubescens. The former types are sterile while the latter cross freely amongst themselves and with 2n = 28 and 2n=56 trees.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. 1953. Introgressive hybridisation. Biol. Rev. 28, 280307.CrossRefGoogle Scholar
Anderson, E. and Abbe, E. C. 1934. A quantitative comparison of specific and generic differences in the Betulaceae. J. Arnold Arbor. 15, 4349.CrossRefGoogle Scholar
Aston, D. 1975. The taxonomy and genecology of birch. Ph.D. thesis, University of Aberdeen.Google Scholar
Berrie, A. A. 1953. A study of the Scottish birch with special reference to the genetics and ecology of the species. Ph.D. thesis, University of Glasgow.Google Scholar
Brown, I. R. and Al-Dawoody, D. M. 1977. Cytotype diversity in a population of Betula alba L. New Phytol. 79, 441453.CrossRefGoogle Scholar
Brown, I. R. and Al-Dawoody, D. M. 1979. Observations on meiosis in three cytotypes of Betula alba L. New Phytol. 83, 801811.CrossRefGoogle Scholar
Brown, I. R., Kennedy, D. and Williams, D. A. 1982. The occurrence of natural hybrids between Betula pendula Roth, and B. pubescens Ehrh. Watsonia 14, 133145.Google Scholar
Clausen, K. E. 1970. Interspecific crossability tests in Betula. Proceedings of Meeting oflUFRO Section 22 Working Group on Sexual Reproduction of Forest Trees, Varparanto, Finland, 1970.Google Scholar
Croker, B. 1955. The autecology of Betula species in the vicinity of Sheffield. Ph.D. thesis, University of Sheffield.Google Scholar
Darlington, C.D. 1956. Chromosome botany and the origins of cultivated plants. London: Allen and Unwin.Google Scholar
Darlington, C. D. and Mather, K. 1949. Elements of genetics. London: Allen and Unwin.Google Scholar
Darlington, C. D. and Wylie, A. P. 1955. Chromosome Atlas of Flowering Plants. London: Allen and Unwin.Google Scholar
Dugle, J. R. 1966. A taxonomic study of Western Canadian species in the genus Betula. Can. J. Bot. 44, 9291007.CrossRefGoogle Scholar
Ehrendorfer, F., Krendl, F., Habeler, E. and Saver, W. 1968. Chromosome numbers and evolution in primitive angiosperms. Taxon 17, 337368.CrossRefGoogle Scholar
Eifler, I. 1958. Kreuzungen zwischen Betula verrucosa und Betula pubescens. Zuchter 28, 331336.Google Scholar
Eifler, I. 1960. Untersuchungen zur individuellen Bedingtheit des Kreuzungserfolges zwischen Betula pendula und Betula pubescens. Silvae Genet. 9, 159—165.Google Scholar
Gardiner, A. S. and Pearce, N. J. 1979. Leaf shape as an indicator of introgression between Betula pendula and B. pubescens. Trans. Bot. Soc. Edinb. 43, 91103.CrossRefGoogle Scholar
Grant, V. 1963. The origin of adaptations. New York: Columbia University Press.Google Scholar
Grant, W. F. 1969. Decreased DNA content of Betula chromosomes at high ploidy as determined by cytophotometry. Chromosoma 26, 326336.CrossRefGoogle Scholar
Hagman, M. 1971. On self- and cross-incompatibility shown by Betula verrucosa Ehrh. Commun. Inst. Forest Fenn. 73 (6), 1125.Google Scholar
Helms, A. and Jørgensen, C. A. 1925. Birkene paa Maglemose. Bot. Tidsskr. 39, 57133.Google Scholar
Jentys-Szaferowa, J. 1938. Biometrical studies in the collective species Betula alba L. 2. The possibility of hydridisation between species Betula verrucosa Ehrh. and B. pubescens Ehrh. Rozpr. Spraw. Inst. Badaw. Las. Panst. SA 40.Google Scholar
Johnsson, H. 1946. Progeny of triploid Betula verrucosa Ehrh. Bot. Notiser 99, 285290.Google Scholar
Johnsson, H. 1949. Studies on birch species hybrids: Betula verrucosa × B. japonica, B. verrucosa × B. papyrifera and B. pubescens × B. papyrifera. Hereditas 35, 115135.CrossRefGoogle Scholar
Johnsson, H. 1974. Genetic characteristics of Betula verrucosa Ehrh. and B. pubescens Ehrh. Ann. Forestales 6/4, 91127.Google Scholar
Jurkevic, I. D. and Cubanov, K. D. 1969. Chromosome numbers in some birch forms. Dokl. Akad. Nauk USSR 13, 635.Google Scholar
Kennedy, D. and Brown, I. R. 1980. Breeding better birch. For. Br. Timber 9, 4445.Google Scholar
Kennedy, D. and Brown, I. R. 1983. The morphology of the hybrid Betula pendula Roth, × B. pubescens Ehrh. Watsonia 14, 329336.Google Scholar
Kenworthy, J. B., Aston, D. and Bucknall, S. A. 1972. A study of hybrids between Betula pubescens Ehrh. and B. nana L. from Sutherland—an integrated approach. Trans. Bot. Soc. Edinb. 42, 517539.CrossRefGoogle Scholar
Lindquist, B. 1947. On the variation in Scandinavian Betula verrucosa Ehrh. with some notes on the Betula series verrucosae Suckacz. Svensk Bot. Tidskr. 41, 4580.Google Scholar
Love, A. 1944. A new triploid Betula verrucosa. Svensk Bot. Tidskr. 38, 381393.Google Scholar
Love, A. and Love, D. 1948. Chromosome numbers of northern plant species: Reykjavik (cited by Vaarama, , 1969).Google Scholar
Love, A. and Love, D. 1961. Chromosome numbers of central and northwest Europe plant species. Op. Bot. 5, 1581.Google Scholar
Mehra, A. and Mehra, P. N. 1974. Organogenesis and plantlet formation in vitro in Almond. Bot. Gaz. 135(i), 6173.CrossRefGoogle Scholar
Mehra, P. N. 1972. Cytological evolution of hardwoods. Nucleus 15, 6468.Google Scholar
Mehra, P. N. and Bawa, K. S. 1968. Chromosomal evolution in tropical hardwoods. Evolution 23,466481.CrossRefGoogle Scholar
Nielson, E. L. and Nath, J. 1961. Somatic instability in derivatives from Agroelymus turneri resembling Agropyron repens. Am. J. Bot. 48, 345349.CrossRefGoogle Scholar
Raven, P. H. and Khyos, D. W. 1965. New evidence concerning the original basic chomosome number of angiosperms. Evolution 19, 244—248.CrossRefGoogle Scholar
Stebbins, G. L. 1971. Chromosomal evolution in higher plants. London: Edward Arnold.Google Scholar
Tai, W. 1970. Multipolar meiosis in diploid crested wheatgrass Agropyron cristatum. Am. J. Bot. 57, 11601169.CrossRefGoogle Scholar
Taper, L. J. and Grant, W. E. 1973. The relationship between chromosome size and DNA content in Betula species. Caryologia 26, 263—273.Google Scholar
Tischler, G. 1950. Die Chromosomenzahlen der Gefasspflanzen Mitteleuropas. 's Gravenhage (cited by Vaarama, , 1969).CrossRefGoogle Scholar
Vaarama, A. 1969. Induced mutations and polyploidy in birch, Betula species. Final Report, Part I. Department of Botany, University of Turku, Finland.Google Scholar
Williams., D. A. 1981. Chemotaxonomy and cytology of birches in Scotland. Ph.D. thesis, University of Aberdeen.Google Scholar
Woodworth, R. H. 1931. Polyploidy in the Betulaceae. J. Arnold Arbor. 12, 206217.CrossRefGoogle Scholar