Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T21:30:00.285Z Has data issue: false hasContentIssue false

XVI.—Electron Microscopic Studies of Spinal Ganglion Cells*

Published online by Cambridge University Press:  11 June 2012

J. Hossack
Affiliation:
Departments of Chemistry and Anatomy, Glasgow University.
G. M. Wyburn
Affiliation:
Departments of Chemistry and Anatomy, Glasgow University.
Get access

Synopsis

Thin sections of the spinal ganglion of the rat were cut and examined with the electron microscope. Two main types of nerve cell are described. Type A with equal electron density of nucleus and cytoplasm. The cytoplasm contains large aggregates of Nissl's substance discretely scattered throughout the cell, mitochondria and osmophilic granules. Type B with a “light” nucleus and a “dark” cytoplasm. The cytoplasm is closely packed and homogeneous so that it is difficult to separate out the various cytoplasmic elements.

There is a well-marked nuclear membrane about 500 Å thick and characteristic strawberry nucleolus.

The capsular cells are closely applied to the nerve cell with no intervening boundaries. A system of cytoplasmic filaments—the “endoplasmic reticulum”—is present in the intercellular regions.

There are nerve fibres with lamellated myelin sheath, axolemma, Schwann cells and Schwann membrane.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Bacsich, P., and Wyburn, G. M., 1953. Quart. J. Micro. Sci., 94, No. 1.Google Scholar
Barr, M. L., and Bertram, E. G., 1949. Nature, 163, 676.Google Scholar
Beams, H. W., Van Breemen, V. L., Newfanf, D. M., and Evans, T. C., 1952. J. Comp. Neurol., 96, No. 2.Google Scholar
Bernhard, W., Hagenau, A., Gauthier, A., and Oberling, C., 1952. Z.f. Zellforsch., 37, 281.Google Scholar
Bretschneider, L. H., 1952. Int. Rev. Cytol., 1, 305.Google Scholar
Cajal, S. Ramón, Y., 1906. Ergebn. Anat. EntwGesch., 16, 177215.Google Scholar
Callan, H. G., and Tomlin, S. G., 1950. Proc. Roy. Soc., B, 137, 367.Google Scholar
Caspersson, T. O., 1950. Cell Growth and Cell Function. W. W. Norton &Co., Inc.Google Scholar
Chinn, P., 1938. J. Cell. Comp. Physiol., 12, 1.CrossRefGoogle Scholar
De Castro, F., 1922. Arch, de Neurobiol., 3.Google Scholar
Dempsey, E. W., 1953. Amer.J. Anat., 93, No. 3, 331.CrossRefGoogle Scholar
Dogiel, A. S., 1896. Anat. Anz., 12, 140152.Google Scholar
Fernandez-Morán, H., 1952. Exp. Cell Res., 3, 282.Google Scholar
Hartmann, J. F., 1953. J. Comp. Neurol., 99, No. 1.Google Scholar
Hess, A., and Lansing, A. I., 1953. Anat. Rec., 117, 175.CrossRefGoogle Scholar
Hyden, H., 1943. Acta Physiol. Scand., 6, Suppl. 17.Google Scholar
Monné, L., 1942. Ark. Zool., 34B, 205.Google Scholar
Palade, G. E., 1953. J. Histoch. and Cytol., I, No. 4, 188.CrossRefGoogle Scholar
Palade, G. E., and Claude, A., 1949. J. Morph., 85, 35.CrossRefGoogle Scholar
Palade, G. E., and Porter, K. R., 1952. Anat. Rec., 112, 68.Google Scholar
Palay, S. L., and Wissig, S. L., 1953. Anat. Rec., 116, 301.Google Scholar
Pease, D. C., and Baker, R. F., 1951. Anat. Rec., 110, 505.Google Scholar
Penfield, W., 1932. Cytology and Cellular Pathology of the Nervous System. Vol. I. Paul & Hocker, New York.Google Scholar
Pischinger, A., 1950. Protoplasma, 39, 567.CrossRefGoogle Scholar
Sjöstrand, F., 1953. Nature, 171, 30.Google Scholar