Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T11:23:37.713Z Has data issue: false hasContentIssue false

X.—Mitosis and Cell Differentiation in the Blood

Published online by Cambridge University Press:  11 June 2012

L. F. La Cour
Affiliation:
John Innes Horticultural Institution, Merton, London, S.W. 19.
Get access

Extract

It was in 1878 that Ehrlich, with the aid of his triacid stain, described in terms of granulation of the cytoplasm six types of leucocytes. This marked the first real advance in our knowledge of the blood corpuscles. Present-day classification of cells in the blood-forming tissues gives six main groups with about thirty named types of cells. These fine subdivisions appear to represent different stages in different lines of development from one original type, chiefly by change in the shape of the resting nucleus. Divergence in opinion arises as to whether all these types of cell develop in the red bone marrow, or whether some arise elsewhere in the body.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1944

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Angelini, G., and Barasciutti, A., 1938. “Morfologia delle cariocinesi nel midollo osseo,” Arch. Scienze Med., LXVI, 257.Google Scholar
Barber, H. N., 1938. “Delayed Mitosis and Chromatid Fusion,” Nature, Lond., CXLI, 80.CrossRefGoogle Scholar
Bauer, H., 1933. “Die wachsenden Oocytenkerne einiger Insekten in ihrem Verhalten zur Nuclealfärbung,” Zeits. Zellforsch., XVIII, 254.CrossRefGoogle Scholar
Boveri, T., 1929. The Origin of Malignant Tumours, Transl. by Boveri, M., London, Baillère, Tindall & Cox.Google Scholar
Brachet, J., 1940. “La Localisation de l'Acide thymonucléique pendant l'Oogenèse et la Maturation chez les Amphibiens,” Arch. Biol., LI, 151.Google Scholar
Callan, H. G., 1942. “Heterochromatin in Triton,” Proc. Roy. Soc., B, CXXX, 324.Google Scholar
Caspersson, J., 1939. “On the Role of the Nucleic Acids in the Cell,” Proc. 7th Int. Genet. Congr., 85.Google Scholar
Caspersson, J., 1941. “Zytoplasmatische Nukleotide in Tumorzellen,” Naturwiss., XXIX, 33.CrossRefGoogle Scholar
Caspersson, T., and Santesson, L., 1942. “Studies on Protein Metabolism in the Cells of Epithelial Tumours,” Acta Radiologica Suppl., XLVI, 1105.Google Scholar
Darlington, C. D., 1942. “Chromosome Chemistry and Gene Action,” Nature, Lond., CXLIX, 66.CrossRefGoogle Scholar
Darlington, C. D., and La Cour, L. F., 1940. “Nucleic Acid Starvation of Chromosomes in Trillium,” Journ. Genet., XL, 185.CrossRefGoogle Scholar
Darlington, C. D., and La Cour, L. F., 1941. “The Detection of Inert Genes,” Journ., Hered., XXXII, 114.Google Scholar
Darlington, C. D., and La Cour, L. F., 1942. The Handling of Chromosomes, London, Allen & Unwin.Google Scholar
Darlington, C. D., and La Cour, L. F., 1944. “Chromosome Breakage and the Nucleic Acid Cycle,” Journ. Genet. (in the press).Google Scholar
Darlington, C. D., and Thomas, P. T., 1941. “Morbid Mitosis and the Activity of Inert Chromosomes in Sorghum,” Proc. Roy. Soc., B, CXXX, 127.Google Scholar
Ehrlich, P., 1878–79 b. “Über die specifischen Granulationen des Blutes,” Verh. physiol. Ges. Berlin. Arch. Anat. Physiol., Phys. Abt., V, 571.Google Scholar
Evans, H. M., and Swezy, O., 1929. “The Chromosomes in Man,” Mem. Univ. Calif., IX, 1.Google Scholar
Grüneberg, H., 1943. “The Anæmia of Flex-Tailed Mice. II. The Sidtrocytes,” Journ. Genet., XLIV, 246.Google Scholar
Heidenhain, M., 1894. “Neue Untersuchungen über die Zentralkörper.,” Arch. mikr. Anat., 43.CrossRefGoogle Scholar
Klingstedt, H., 1939. “Taxonomic and Cytological Studies on Grasshopper Hybrids,” Journ. Genet., XXXVII, 389.CrossRefGoogle Scholar
Koller, P. C., 1937. “The Genetical and Mechanical Properties of Sex Chromosomes. III. Man,” Proc. Roy. Soc. Edin., LVII, 194.Google Scholar
Koller, P. C., 1941. “The Genetical and Mechanical Properties of the Sex Chromosomes. VII. Apodemus sylvaticus and A. hebridensis,” Journ. Genet., XLI, 375.CrossRefGoogle Scholar
Koller, P. C., 1943. “Origin of Malignant Tumour Cells,” Nature, Lond., CLI, 244.CrossRefGoogle Scholar
Maximow, A., 1930. A Textbook of Histology, W. B. Saunders, Philadelphia and London.Google Scholar
Painter, T. S., 1923. “Studies in Mammalian Spermatogenesis. II. Man,” Journ. exp. Zool., XXXVII, 291.CrossRefGoogle Scholar
Painter, J. S., 1924. “The Sex Chromosomes in Man,” Amer. Nat., LVIII, 506.CrossRefGoogle Scholar
Painter, J. S., 1943. “Cell Growth and Nucleic Acids in the Pollen of Rhoeo discolor,” Bot. Gaz., CV, 58.CrossRefGoogle Scholar
Painter, J. S., and Taylor, A. N., 1940. “Nuclear Changes Associated with the Growth of Oocytes in the Toad,” Anat. Rec. Suppl., LXXVIII, 84.Google Scholar
Petri, S., 1933. “Morphologie und Zahl der Blutkörperchen, etc.,” Acta Path. Microbiol. Scand., X, 159.CrossRefGoogle Scholar
Washburn, R. N., and Rozendal, H. M., 1938. “Gastric Lesions Associated with Pernicious Anæmia,” Ann. intern. Med., XI, 2172.Google Scholar
Wilson, J. E., 1942. “The Bone Marrow in Anæmia,” Med. Journ. Aust., XVIII, 513.CrossRefGoogle Scholar
Wintrobe, M. M., 1942. Clinical Hematology, London, H. Kimpton.CrossRefGoogle Scholar