Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T22:45:01.567Z Has data issue: false hasContentIssue false

VIII.—Electron Microscopic Study and Amino Acid Analysis on Human Aortic Elastin*

Published online by Cambridge University Press:  11 June 2012

A. Serafini-Fracassini
Affiliation:
Department of Physiology and Biochemistry, University of St Andrews
G. R. Tristram
Affiliation:
Department of Physiology and Biochemistry, University of St Andrews
Get access

Synopsis

Human aortic elastin, purified by autoclaving and alkaline extraction, has been resolved by ultrasonic treatment into individual filaments, which appear, in the electron microscope, to be of constant diameter (25 Å) with junction points at fairly regular intervals (1300)Å.

Amino acid analyses on fœtal, normal and old adult elastin showed that the desmosine(s) content remains constant at 3 residues per 105g. of protein which is equivalent to 1100 Å intervals between successive residues, assuming that these are evenly spaced along the polypeptide chain(s). On the other hand the amino acid composition was found to change with age. Thus the aspartic acid and glutamic acid contents increase from 3 and 19 to 11 and 27 residues respectively; histidine and methionine, which are both absent from fœtal elastin are present in small but definite amounts (2 and 3 residues respectively) in older elastins. The lysine content is 9 residues in fœtal elastin and 6 residues in older elastin. Probably the most remarkable feature of this protein is the high content of non-polar amino acids; of 1100 residues in 105g. protein about 1000 (including glycine and proline) have hydrophobic side chains.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Braginskaya, F. I., and El 'Piner, I. Y., 1963. Biofizika, 8, 34.Google Scholar
Charles, A., 1961. Brit.J. Derm., 73, 57.Google Scholar
Chibnall, A. C., Rees, M. W. and Williams, E. F., 1943. Biochem. J., 37, 354.CrossRefGoogle Scholar
Cox, R. C., and Little, K., 1961. Proc. Roy. Soc. Lond., B, 155, 232.Google Scholar
Crick, F. H. C. and Rich, A., 1955. Nature, Lond., 176, 780.CrossRefGoogle Scholar
Fitzpatrick, M., Hospelhorn, V. D. and Lake, S., 1965. Amer. Heart J., 69, 211.Google Scholar
Franchi, C. M., and De Robertis, E., 1951. Proc. Soc. Exp. Biol., N. Y., 76, 515.CrossRefGoogle Scholar
Franzblau, C., Sinen, F. M. and Faris, B., 1965. Nature, Lond., 205, 802.Google Scholar
Gotte, L., Meneghelli, V. and Castellani, A., 1965. In Structure and Function of Connective and Skeletal Tissue. (Butterworth: London.)Google Scholar
Gotte, L., and Serafini-Fracassini, A., 1963. J. Atheroscler. Res., 3, 247.CrossRefGoogle Scholar
Gross, J., 1949. J. Exp. Med., 89, 699.Google Scholar
Kawase, O., 1959. Bull. Res. Inst. Diathetic Med., Kumamoto Univ., 9, (suppl.), 8.Google Scholar
Keech, M. K., 1960 a. J. Biophys. Biochem. Cyt., 7, 533.Google Scholar
Keech, M. K., 1960 b. J. Biophys. Biochem. Cyt., 7, 539.CrossRefGoogle Scholar
Lansing, A. I., Roberts, E., Ramasarma, G. B., Rosenthal, T. B. and Alex, M., 1951. Proc. Soc. Exp. Biol., N.Y., 76, 714.CrossRefGoogle Scholar
Lansing, A. I., Rosenthal, T. B., Alex, M. and Dempsey, E. W., 1952. Anat. Rec, 114, 555.CrossRefGoogle Scholar
Linden, I. H., Laden, E., Erickson, J. O. and Armen, D., 1955. J. Invest. Derm., 24, 83.CrossRefGoogle Scholar
Low, F. N., 1961. Anat. Rec, 139, 105.Google Scholar
Miller, E. J., Martin, G. R. and Piez, K. A., 1964. Biochem. Biophys. Res. Commun., 17, 248.Google Scholar
Partridge, S. M. and Davis, H. F., 1955. Biochem, J., 61, 21.CrossRefGoogle Scholar
Partridge, S. M., Davis, H. F. and Adair, G. S., 1955. Biochem. J., 61, 11.CrossRefGoogle Scholar
Partridge, S. M., Elsden, D. F. and Thomas, J., 1963. Nature, Lond., 197, 1297.Google Scholar
Partridge, S. M., Elsden, D. F., Thomas, J., Dorfman, A., Telser, A. and Ho, P., 1954. Biochem. J., 93, 30 c.Google Scholar
Pease, D. C., and Molinari, S., 1960. J. Ultrastruct. Res., 3, 447.Google Scholar
Ramachandran, G. N., 1963. In Aspects of Protein Structure, 39. (New York: Academic Press.)Google Scholar
Ramachandran, G. N., and Kartha, G., 1954. Nature, Lond., 174, 269.Google Scholar
Ramachandran, G. N., and Santhanam, M. D., 1957. Proc. Indian Acad. Sci., 45A, 124.CrossRefGoogle Scholar
Rhodin, J., and Dalhamn, T., 1955. Exp. Cell. Res., 9, 371.CrossRefGoogle Scholar
Rich, A., and Crick, F. H. C., 1961. J. Molec. Biol., 3, 483.CrossRefGoogle Scholar
Scheraga, H. A., 1963. In The Proteins; Ed. Neurath, H.. Vol.1, 527. (New York: Academic Press.)Google Scholar
Thomas, J., Elsden, D. F. and Partridge, S. M., 1963. Nature, Lond., 200, 651.Google Scholar