Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T01:41:56.722Z Has data issue: false hasContentIssue false

Studies in Penicillin Formation.*

Published online by Cambridge University Press:  11 June 2012

R. P. Cook
Affiliation:
Department of Biochemistry, University College, Dundee. [University of St Andrews.]
Margaret B. Brown
Affiliation:
Department of Biochemistry, University College, Dundee. [University of St Andrews.]
Get access

Synopis

Extracts of green peas stimulate penicillin formation by Penicillium notatum, and fractions have been prepared by treating the juice with ethanol to find the constituents present which have a stimulating action. The mould has been grown as a surface culture on a basal medium containing NaNO3, KH2PO4, MgSO4, NaCl and lactose to which the various fractions have been added. One chemically complex fraction containing a large number of amino acids (demonstrated by paper partition chromatography and estimated micro-biologically), carbohydrates and mineral matter (containing a number of trace elements) gives high yields of penicillin. The types of penicillin produced on this medium have been determined by micro-chromatography.

Chemically defined media have been formulated, and information has been obtained on the sources of carbon and nitrogen that permit growth and penicillin formation.

The amounts of carbohydrate and salts in the medium influence the formation of penicillin. Excess of carbohydrates such as glucose cause an increase in growth of the mould and a decrease in the production of penicillin.

The significance of the results in relation to the formation of penicillin is discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Abraham, E. P., Chain, E., Fletcher, C. M., Florey, H. W., Gardner, A. D., Heatley, N. G., and Jennings, M. A., 1941. “Further Observations on Penicillin”, Lancet (ii), 177.CrossRefGoogle Scholar
Barton-Wright, E. C. Practical Methods for the Microbiological Assay of the Vitamin B Complex and Essential Amino Acids, London, Ashe Laboratories Ltd.Google Scholar
Birkinshaw, J. H., 1937. “Biochemistry of the Lower Fungi”, Biol. Rev., xii, 357.CrossRefGoogle Scholar
B.D.H. Book of Organic Reagents for Analytical Use, The British Drug Houses Ltd., London.Google Scholar
Behrens, O. K., 1949, in The Chemistry of Penicillin, Chap. XIX, “Biosynthesis”.Google Scholar
Bowden, J. P., and Paterson, W. H., 1946. “The Rôle of Corn Steep Liquor in the Production of Penicillin”, Arch. Biochem., ix, 387.Google Scholar
Brodie, J., 1945. “A Simple and Convenient Method for the Assay of Penicillin”, Journ. Path. Bad., LVII, 257.CrossRefGoogle Scholar
Calam, C. T., and Hockenhull, D. J. D., 1949. “The Production of Penicillin in Surface Culture, using Chemically Defined Media”, Journ. Gen. Microbiol., iii, 19.CrossRefGoogle Scholar
Chain, E., 1948. “The Chemistry of Penicillin”, Ann. Rev. Biochem., xvii, 657.CrossRefGoogle Scholar
The Chemistry of Penicillin, 1949. Ed. by Clarke, H. T., Johnson, J. R. and Robinson, R.. Princeton University Press, Princeton, N.Y.CrossRefGoogle Scholar
Chibnall, A. C, Rees, M. W., and Williams, E. F., 1943. “The Total Nitrogen Content of Egg Albumin and other Proteins”, Biochem. Journ., xxxi, 354.CrossRefGoogle Scholar
Clayton, J. C, Hems, B. A., Robinson, F. A., Andrews, R. D., and Hunwicke, R. F., 1944. “Preparation of Penicillin. Improved Method of Isolation”, Biochem. Journ., xxxviii, 452.CrossRefGoogle Scholar
Consden, R., Gordon, A. H., and Martin, A. J. P., 1944. “Qualitative Analysis of Proteins. A Partition Chromatographic Method using Paper”, Biochem. Journ., xxxviii, 224.CrossRefGoogle Scholar
Cook, R. P., and Brown, M. B., 1946. “Penicillin Production on Juices from Various Parts of the Pea Plant”, Biochem. Journ. Proc, XXII.Google Scholar
Cook, R. P., and Tulloch, W. J., 1944. “The Production of Penicillin on Media made from Vegetable Extracts, particularly Extracts of Pea”, Journ. Path. Bad., LVI, 555.CrossRefGoogle Scholar
Cook, R. P., and Tulloch, W. J., 1945. “Green Pea Juice as a Medium for the Production of Penicillin”, Nature, Lond., CLV, 515.CrossRefGoogle Scholar
Cook, R. P., Tulloch, W. J., Brown, M. B., and Brodie, J., 1945. “The Production of Penicillin using Fractions obtained from Aqueous Extracts of Pea (Pisum sativum)”, Biochem. Journ., xxxix, 314.CrossRefGoogle Scholar
Cumming, A. C, and Kay, S. A., 1942. Quantitative Chemical Analysis, 8th Ed., London, Gurney & Jackson.Google Scholar
Davies, H., and Da Vies, W., 1923. “Sodium-6-Chloro-5-Nitro-m-Toluene Sulphonate. A New Reagent for Potassium”, Journ. Chem. Soc, CXXIII, 2976.CrossRefGoogle Scholar
Dunn, M. S., Shankman, S., Camien, M. N., Frankl, W., and Rockland, L. B., 1944. “Investigations of Amino Acids, Peptides and Proteins. XVIII. The Amino Acid Requirements of Leuconostoc Mesenteroides P. 60”, Journ. Biol. Chem., CLVI, 703.CrossRefGoogle Scholar
Fleming, A., 1929. “On Anti-Bacterial Action of Cultures of Penicillium, with Special Reference to their Use in Isolation of B. influenzœ”, Brit. Journ. expt. Path., x, 226.Google Scholar
Foster, J. W., Woodruff, F. B., Perlman, D., Mcdaniel, L. E., Wilker, B. L., and Hendlin, D., 1946. “Microbiological Aspects of Penicillin. IX. Cottonseed Meal as a Substitute for Corn Steep Liquor in Penicillin Production”, Journ. Bact., LI, 695.CrossRefGoogle Scholar
Franke, W., and Lorenz, F., 1937. “Zur Kenntnis der sog. Glucose-oxydase I”, Liebig's Ann., Dxxxii, I.Google Scholar
Gale, E. F., 1945. “Studies on Bacterial Amino Acid Decarboxylases”, Biochem. Journ., xxxix, 46.CrossRefGoogle Scholar
Gavronsky, J. O., 1945. “Penicillin Grown from Nutrient Medium Prepared from Potato Extract”, Brit. Med. Journ., 11, 82.CrossRefGoogle Scholar
Goodall, R. R., and Levi, A. A., 1947. “A Micro-Chromatographic Method for the Detection and Approximate Determination of the Different Penicillins in a Mixture”, Analyst, LXXII, 277.CrossRefGoogle Scholar
Granichstadten, H., and Percival, E. G. V., 1943. “The Polysaccharides of Iceland Moss (Cetraria Islandica). Part I. Preliminary Study of Hemicelluloses”, Journ. Chem. Soc, 1, 54.CrossRefGoogle Scholar
Hac, L. R., Snell, E. E., and Williams, R. J., 1945. “The Microbiological Determination of Amino Acids. II. Assay and Utilisation of Glutamic Acid and Glutamine by Lactobacillus arabinosus”, Journ. Biol. Chem., CLIX, 273.CrossRefGoogle Scholar
Halpern, P. E., Siminovitch, D., and McFarlane, W. D., 1945. “The Effect of Specific Amino Acids on the Yield of Penicillin in Submerged Culture”, Science, CII, 230.CrossRefGoogle Scholar
Harper, G. J., 1943. “Inhibition of Penicillin in Routine Culture Media”, Lancet (ii), 569.CrossRefGoogle Scholar
Kerr, S. E., 1940. “The Determination of Purine Nucleotides and Nucleosides in Blood and Tissues”, Journ. Biol. Chem., cxxxii, 147.CrossRefGoogle Scholar
Knight, S. G., and Frazier, W. C, 1945. “The Effect of Corn Steep Liquor Ash on Penicillin Production”, Science, cii, 617.CrossRefGoogle Scholar
Koffler, H., Knight, S. G., and Frazier, W. C, 1947. “The Effect of Certain Mineral Elements on the Production of Penicillin in Shake Flasks”, Journ. Bad., LIII, 115.Google Scholar
Kramer, B., and Tisdall, F. F., 1921. “A Simple Technique for the Determination of Calcium and Magnesium in Small Amounts of Serum”, Journ. Biol. Chem., XLVII, 475.CrossRefGoogle Scholar
McCance, R. A., and Shipp, H. L., 1931. “The Colorimetric Determination of Sodium”, Biochem. Journ., xxv, 449.CrossRefGoogle Scholar
Mann, T., 1944. “Studies on the Metabolism of Mould Fungi”, Biochem. Journ., XXXVIII, 339.CrossRefGoogle Scholar
Markham, R.. and Smith, J. D., 1949. “Chromatography of Nucleic Acid Derivatives”, Nature, CLXIII, 250.CrossRefGoogle Scholar
Moyer, A. J., and Coghill, R. D., 1946. “Penicillin VIII. Production in Surface Cultures”, Journ. Bad., LI, 57.Google Scholar
Moyer, A. J., and Coghill, R. D., 1947. “Penicillin X. The Effect of Phenylacetic Acid on Penicillin Production“, Journ. Bad., LIII, 329.Google Scholar
Negroni, P., 1944. “Estudio Sobre Accion Inhibidore del Penicillium notatum. III. Influencia de la Fuente de Nutricion Nitrogenada”, Rev. Inst. Bad., XII, 374.Google Scholar
Partridge, S. M., 1948. “Filter Paper Partition Chromatography of Sugars”, Biochem. Journ., XLII, 238.CrossRefGoogle Scholar
Phillips, T. G., 1935. “Determination of N in Relatively Simple Compounds”, Plant Physiol., x, 393.Google Scholar
Pratt, R., and Hok, K. A., 1946. “Influence of the Proportions of KH2PO4, MgSO4 and NaNO3 in the Nutrient Solution on the Production of Penicillin in Submerged Cultures”, Amer. Journ. Bot., xxxiii, 149.CrossRefGoogle Scholar
Rao, R., and Venkataraman, P. R., 1946. “Relations between the Source of Nitrogen and Antibiotic Formation by Aspergillus Fumigatus Fresenius”, Nature, CLVIII, 241.CrossRefGoogle Scholar
Raper, K. B., and Fennel, D. I., 1946. “The Production of Penicillin X in Submerged Culture”, Journ. Bad., LI, 761.Google Scholar
Roe, H., 1934. “A Colorimetric Method for the Determination of Fructose in Blood and Urine”, Journ. Biol. Chem., cvii, 15.CrossRefGoogle Scholar
Shankman, S., Camien, M. N., and Dunn, M. S., 1947. “The Determination of Glycine in Protein Hydrolysates with Leuconostoc Mesenteroides P. 60”, Journ. Biol. Chem., CLXVIII, 51.CrossRefGoogle Scholar
Stokes, J. L., and Gunness, M., 1945. “Microbiological Methods for the Determination of Amino Acids. I. Aspartic Acid and Serine”, Journ. Biol. Chem., CLVII, 651.CrossRefGoogle Scholar
Stone, R. W., and Farrell, M. A., 1946. “Synthetic Media for Penicillin Production”, Science, civ, 445.CrossRefGoogle Scholar
Van Den Haar, A. W., 1917. “Eine Methode zur Quantitativen Bestimmung Freir und Gebunder Galaktose”, Biochem. Zeits., LXXXI, 263.Google Scholar
White, A. G. C, Krampitz, L. O., and Werkman, C. H., 1945. “Synthetic Media”, Arch. Biochem., viii, 303.Google Scholar
Wolf, F. T., 1947. “The Oxidation of Carbohydrates by a Surface Strain of Penicillium notatum”, Arch. Biochem., xiii, 83.Google Scholar
Wolf, F. T., 1948. “The Amino Acid Metabolism of Penicillium Chrysogenum Z. 176”, Arch. Biochem., xvi, 143.Google Scholar
Wooster, R. C., and Cheldelin, V. H., 1945. “Penicillium digitatum”, Arch. Biochem., viii, 311.Google Scholar