Published online by Cambridge University Press: 05 December 2011
During periods of sustained moderate river discharge and quiescent marine conditions little external suspended sediment enters the estuarine circulation of the Tay. That material which is in suspension is largely derived from the estuary margins where tidal currents superimposed by wind-induced waves are competent to resuspend fine material from the surface of the ‘mud’ flats and erode bedded silts from the incised banks of minor channels and runnels draining them. The quantities of this sediment entering the system are largely determined by tidal state and amplitude, as well as wind velocity.
On spring tides the flats are entirely covered at high water, and dry out completely at low water. The volume of water and its areal coverage at high tide ensures that, during the ebb, water charged with high concentrations of suspended sediment is directed from the fiats into the surface and middepth waters of the main channel. This process acting along the 20 km length of the channel flanking the ‘mud’ flats, combined with the low tide ‘ponding effect’ caused by the tide flooding from the sea while the upper estuarine water is still ebbing, results in the cumulative formation of a zone of high suspended sediment concentrations (turbidity maximum). As the flood tide becomes fully established the zone is diluted and dispersed. During neap tides the same processes operate, but because a smaller area of the flats is covered at high water and uncovered at low water, and because neap tidal current speeds are lower than those for spring tides, two proportionally weaker zones are recognised.
Following periods of sustained moderate river discharge, quiet sea conditions and calm weather, suspended sediment concentrations in the Tay are negligible irrespective of tidal state or amplitude.