Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T05:38:17.073Z Has data issue: false hasContentIssue false

Seasonal studies on the phytoplankton and primary production in the inner Firth of Clyde

Published online by Cambridge University Press:  05 December 2011

A. D. Boney
Affiliation:
Department of Botany, University of Glasgow, Glasgow G12 8QQ, Scotland
Get access

Synopsis

Analysis of the factors influencing the seasonal changes in biomass of the ‘net’ phytoplankton in 1972– 73 snowed that the dynamics of the spring waxing of the diatom populations were controlled by narrow ‘windows’ of climatic events, and that subsequent fluctuations in cell numbers were linked with the interplay between zooplankton grazing and wind induced dispersion. Data for 1976–77, set against a similar background of events with the ‘net’ plankton, showed that the nanophytoplankton constituted a less variable biomass through the seasons and, on an annual basis, contributed some 50% of the total carbon fixed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H. 1956. Balanus balanoides in the Firth of Clyde. Journal of Animal Ecology 25, 7284.CrossRefGoogle Scholar
Beers, J. R. & Stewart, G. L. 1969. The vertical distribution of microplankton and some ecological observations. Journal du Conseil permanent international pour l'exploration de la mer 33, 3044.CrossRefGoogle Scholar
Butler, E. I., Corner, E. D. S. & Marshall, S. M. 1970. On the nutrition and metabolism of zooplankton. VII. Seasonal survey of N and P excretion by Calanus in the Clyde Sea area. Journal of the Marine Biological Association of the United Kingdom. 50, 525560.CrossRefGoogle Scholar
Cushing, D. H. 1975. Marine Ecology and Fisheries. Cambridge: Cambridge University Press.Google Scholar
Dussart, B. M. 1965. Les differentes categories de plancton. Hydrobiologia 26, 7274.CrossRefGoogle Scholar
Edwards, C. 1959. Plankton, particularly Medusae. In Annual Report. Millport: Scottish Marine Biological Association.Google Scholar
Gamble, J. C. 1978. Copepod grazing during a declining spring diatom bloom in the northern North Sea. Marine Biology 49, 303315.CrossRefGoogle Scholar
Hannah, F. J. 1979. Studies on the nanophyloplankton of the Firth of Clyde. Ph.D. thesis, University of Glasgow.Google Scholar
Hannah, F. J. & Boney, A. D. 1980. Standing crop and carbon fixation in rock pool phytoflagellates. Marine Biology Letters 1, 149159.Google Scholar
Hannah, F. J. & Boney, A. D. 1983. Nanophytoplankton in the Firth of Clyde: seasonal abundance, carbon fixation and species composition. Journal of Experimental Marine Biology and Ecology. 67, 105147.CrossRefGoogle Scholar
Hinton, G. C. F. 1974. Studies on the phytoplankton of the Firth of Clyde. Ph.D. thesis, University of Glasgow.Google Scholar
Hinton, G. C. F. & Boney, A. D. 1978. An integrating sampler for quantitative studies on surface water. Berichte Deutsch Wissenschaften Kommentar Meeresforchungen 27, 4851.Google Scholar
Holligan, P. M. & Harbour, D. S. 1977. The vertical distribution and succession of phytoplankton in the western English Channel in 1975 and 1976. Journal of the Marine Biological Association of the United Kingdom 57, 10571093.CrossRefGoogle Scholar
Landry, M. R. 1977. A review of important concepts in the trophic organization of pelagic ecosystems. Helgoland Wissenschaften Meeresuntersuchungen 30, 817.CrossRefGoogle Scholar
McNabb, C. D. 1960. Enumeration of fresh water phytoplankton concentrated on a membrane filter. Limnology and Oceanography 5, 5761.CrossRefGoogle Scholar
Marshall, S. M. 1924. Food of Calanus finmarchicus during 1923. Journal of the Marine Biological Association of the United Kingdom 13, 437–179.CrossRefGoogle Scholar
Marshall, S. M. 1949. On the biology of small copepods in Loch Striven. Journal of the Marine Biological Association of the United Kingdom 28, 45112.CrossRefGoogle Scholar
Marshall, S. M. & Boney, A. D. 1974. Plankton. In The Clyde Estuary and Firth, pp. 3235. London: NERC Publication Cll.Google Scholar
Marshall, S. M., Nicholls, A. G. & Orr, A. P. 1934. On the biology of Calanus finmarchicus V. Seasonal distribution, size, weight and chemical composition in Loch Striven in 1933 and their relation to the phytoplankton. Journal of the Marine Biological Association of the United Kingdom 19, 793828.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1927. The relation of the plankton to some chemical and physical factors in the sea. Journal of the Marine Biological Association of the United Kingdom 14, 837868.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1928. Photosynthesis of diatom cultures. Journal of the Marine Biological Association of the United Kingdom 15, 321360.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1930. A study of the spring diatom increase in Loch Striven. Journal of the Marine Biological Association of the United Kingdom 15, 853878.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1952. On the biology of Calanus finmarchicus VII. Factors affecting egg production. Journal of the Marine Biological Association of the United Kingdom 30, 527547.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1956. On the biology of Calanus finmarchicus IX. Feeding and digestion in young stages. Journal of the Marine Biological Association of the United Kingdom 35, 587603.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1962. Carbohydrate as a measure of phytoplankton. Journal of the Marine Biological Association of the United Kingdom 42, 511519.CrossRefGoogle Scholar
Murray, G. 1897. Report of observations of plant plankton. In Report of the Fishery Board for Scotland 15.Google Scholar
Murray, G. & Blackman, V. H. 1901. The phyto-plankton of the Clyde Sea Area. In Fauna, Flora and Geology of the Clyde Area, pp. 67. Glasgow: B.A.A.S.Google Scholar
Parke, M., Boalch, G. T., Jowett, R. & Harbour, D. S. 1978. The genus Pterosperma (Prasinophyceae): species with a single equatorial ala. Journal of the Marine Biological Association of the United Kingdom 58, 239276.CrossRefGoogle Scholar
Parsons, T. R. & Le Brasseur, R. J. 1970. The availability of food to different trophic levels in the marine food chain. In Marine Food Chains, ed. Steele, J. H.., pp. 325343. Edinburgh: Oliver and Boyd.Google Scholar
Pyefinch, K. A. 1948. Studies on the biology of cirrepedes. Journal of the Marine Biological Association of the United Kingdom 27, 464503.CrossRefGoogle Scholar
Pyefinch, K. A. 1949. Short period fluctuations in the numbers of barnacle larvae, with notes on comparisons between pump and net plankton hauls. Journal of the Marine Biological Association of the United Kingdom 28, 353370.CrossRefGoogle Scholar
Raymont, J. E. G. & Gross, F. 1942. On the feeding and breeding of Calanus finmarchicus under laboratory conditions. Proceedings of the Royal Society of Edinburgh 61B, 267287.Google Scholar
Ryther, J. H. 1969.Photosynthesis and fish production in the sea. Science 166, 7276.CrossRefGoogle ScholarPubMed
Sakshaug, E. & Myklestad, S. 1973. Studies on the phytoplankton ecology of the Trondheim Fjord. III. Dynamics of phytoplankton blooms in relation to environmental factors, bioassay experiments and parameters for the physiological state of the populations. Journal of Experimental Marine Biology and Ecology 11, 157188..CrossRefGoogle Scholar
Steele, J. H. & Frost, B. W. 1977. The structure of plankton communities. Proceedings of the Roval Society of London 280B,485534.Google Scholar
Steemann Nielsen, E., 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. Journal du Conseil permanent international pour l'exploration de la mer 18,117140.CrossRefGoogle Scholar
Strickland, J. D. H. & Parsons, T. R. 1972. A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Bulletin 167.Google Scholar