Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T19:24:36.218Z Has data issue: false hasContentIssue false

Pteridophyte success and past biota—a palaeobotanist's approach

Published online by Cambridge University Press:  05 December 2011

B. A. Thomas
Affiliation:
Department of Life Sciences, University of London, Goldsmiths' College, Rachel McMillan Building, London SE8 3BU, U.K.
Get access

Synopsis

The success of plants which lived in the past should be assessed differently from that of living plants as time is an additional important factor. Success may therefore be judged in one period of time or throughout the whole geological history of the plants.

Limitations of the fossil record through plant fragmentation, lack of preservation and incomplete preservation severely restrict the amount of information available. However, accepting these problems, there are four major ways in which plants may be judged: long term survival, repeated specialisation, dominance and adaptability. Examples are given of pteridophytes that exhibit success in these four ways.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K. L., 1974. Leaf anatomy of Weichselia based on fusainized material. Palaeontology 17, 587598.Google Scholar
Andrews, H. N., 1961. Studies in paleobotany. New York: Wiley.Google Scholar
Andrews, H. N. and Pearsall, C. S., 1941. On the flora of the Frontier Formation of southwestern Wyoming. Ann. Mo. Bot. Gdn 28, 165192.Google Scholar
Andrews, H. N. and Kern, E. M., 1947. The Idaho Tempskyas and associated fossil plants. Ann. Mo. Bot. Gdn 34, 119186.Google Scholar
Arnold, C. A. and Daugherty, L. H., 1963. The fern genus Acrostichum in the Eocene Clarno formation of Oregon, Contr. Mus. Paleont. Univ. Mich. 18, 205227.Google Scholar
Ash, S. R., 1969. Ferns from the Chinle Formation (Upper Triassic) in the Fort Wingate area, New Mexico. Prof. Pap. U.S. Geol. Surv. 613D, 152.Google Scholar
Ash, S. R., 1972. Plant megafossils of the Chinle Formation. In Symposium on the Chinle Formation, ed. Breed, C. S., and W. J. Bull. Mus. Nth Ariz. 47, 2343.Google Scholar
Ash, S. R., 1982. The Upper Triassic Fern Phlebopteris smithii (Daugherty) Arnold and its spores. Palynology 6, 203219.Google Scholar
Banks, H. P., 1970. Evolution and plants of the past. Belmont, Calif.: Wadsworth.Google Scholar
Collinson, M. E., 1978. Dispersed Fern Sporangia from the British Tertiary. Ann. Bot. 42, 233250.Google Scholar
Eggert, D., 1961. The ontogeny of Carboniferous arborescent Lycopsida. Palaeontographica B108, 4392.Google Scholar
Geinitz, H. Br., 1855. Die Versteinerungen der Steinkohlenformation in Sachsen. Leipzig.Google Scholar
Good, C. W., 1971. The ontogeny of Carboniferous articulates: Calamite leaves and twigs. Palaeontographica B133, 137158.Google Scholar
Harris, T. M., 1973. What use are fossil ferns? In The phytogeny and classification of the ferns, ed. Jermy, A. C., Crabbe, J. A. and Thomas, B. A., Bot. J. Linn. Soc. 67, Suppl. 1, 4144.Google Scholar
Jennings, J. R., 1975. Protostigmaria, a new plant organ from the Lower Mississippian of Virginia. Palaeontology 18, 1924.Google Scholar
Kidston, R. and Lang, W. H., 1920. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire, part 3: Asteroxylon mackiei, K. and L. Trans. Roy. Soc. Edinb. 52, 643680.CrossRefGoogle Scholar
Lovis, J. D., 1975. Evolutionary Patterns and Processes in Ferns. Adv. Bot. Res. 4, 229415.Google Scholar
MacGregor, M. and Walton, J., 1948. The story of the Fossil Grove. Glasgow: City of Glasgow Public Parks and Botanic Gardens Department.Google Scholar
Masarati, D. L. and Thomas, B. A., 1982. The stomata of Isoetes. In Studies on Living and Fossil Plants, ed. Nautiyal, D. D., pp. 155162. Allahabad: The Society of Plant Taxonomists.Google Scholar
Morgan, J., 1959. The morphology and anatomy of American species of the genus Psaronius. III. Biol. Monogr. 27, 1108.Google Scholar
Pigg, K. B. and Rothwell, G. W., 1979. Stem-root transition of an Upper Pennsylvanian woody lycopsid. Am. J. Bot. 66, 914924.Google Scholar
Retallack, G. J., 1975. The life and times of a Triassic lycopod. Alcheringa 1, 329.Google Scholar
Ribbins, M. M. and Collinson, M. E., 1978. Further notes on pyritised fern rachides from the London Clay. Tertiary Res. 2, 4750.Google Scholar
Schlanker, C. M. and Leisman, G. A., 1969. The herbaceous Carboniferous lycopod Selaginella fraiponti comb. nov. Bot. Gaz. 130, 3541.Google Scholar
Taylor, T. N., 1981. Paleobotany: An Introduction to Fossil Plant Biology, pp. xiii, 583. New York: McGraw-Hill.Google Scholar
Thomas, B. A., 1981. Structural adaptations shown by the Lepidocarpaceae. Rev. Palaeobot. Palynol. 32, 377388.Google Scholar
Tryon, R. M. and Tryon, A. F., 1982. Ferns and Allied Plants. With Special Reference to Tropical America, pp. vii, 857. New York: Springer.CrossRefGoogle Scholar