Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T13:46:28.940Z Has data issue: false hasContentIssue false

On the History of Recording Tide Gauges

Published online by Cambridge University Press:  05 December 2011

Wolfgang Matthäus
Affiliation:
Institut für Meereskunde, Warnemü nde, der Deutschen Akademie der Wissenschaften, GDR
Get access

Synopsis

Records of water levels date from the first hydrospheric observations. The levels of inland and coastal waters are recorded with the use of tide gauges of various types and construction. The float-level gauge, however, is by far the most frequently used.

The oldest self-recording tide gauge was constructed by Henry R. Palmer, civil engineer of the London Dock Company, in 1831. A float resting on the water is placed in a well communicating with the river. The motion of the water surface is transmitted to the recording machine by wheels and shafts which act on a pencil rack. As the water level rises and falls, by the combined motions of a clock and the tide the pencil produces a line as a function of time.

Even today this principle is still used for float-level gauges. It represents the basis of the modern tide gauges for observing sea levels and their variations.

In 1831 we find another construction by Mitchell, which was erected in the Sheerness dockyard. A few years later Thomas G. Bunt developed a tide gauge, which was used on the eastern bank of the river Avon near Bristol from 1837 to 1872.

In 1834 the first self-recording gauge was erected in France, near Le Havre. On the other continents the first installations were established in Algiers (1834), in the United States and in India (1846), and in Australia (1858)

An installation in Hamburg (1861), which was developed by F. H. Reitz the engineer, is identified as the first German construction.

In 1870 fifteen tide gauges were known on the shores of the European continent (except the British Isles). By 1883 Carlos Ibañez was using information from approximately 67 tide gauge stations for the determination of the mean sea level around the European mainland. Today we find more than 300 installations in Europe, about three-quarters of which are working in north-western European waters and in the Baltic.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References To Literature

Airy, G. B., 1842. Tides and Waves. London.Google Scholar
Anonymous, 1832. The tide gauge at Sheerness. Naut. Mag., 1, 401404.Google Scholar
Airy, G. B., 1932a. A brief history of tidal work in India. Hydrogr. Rev., 9, 122124.Google Scholar
Airy, G. B., 1932b. General repertory of tidal authorities and tidal records. Hydrogr. Rev., 9, 185, 187, 189, 191, 192, 193.Google Scholar
Airy, G. B., 1936. General repertory of tidal authorities and tidal records. Hydrogr. Rev., 13, 64, 68, 71.Google Scholar
Airy, G. B., 1965. Manual of tide observations. Publs U.S. Cst Geod. Surv., 30 715.Google Scholar
Asmus, J., 1887. Der selbstregistrirende Fluthmesser von R. Fuess. Z. InstrumentenKde, 7, 243246.Google Scholar
Easton, A. K., 1970. The tides of the continent of Australia. Horace Lamb Cent. Oceanogr. Res. Pap., 37, 1326.Google Scholar
Franzius, L., 1880. Die Unterweser von Bremen bis Bremerhaven. Petermanns Mitt., 26, 300.Google Scholar
Franzius, L., 1882. Projekt zur Korrektur der Unterweser, 56. Leipzig.Google Scholar
Harris, R. A., 1898. Manual of tides, II. Publs U.S. Cst Geod. Surv, App., 9.Google Scholar
Hoffmann, P., 1883. Vorläuflge Resultate von Gezeiten-Beobachtungen an selbstregistrirenden Pegeln der Ostsee. Ann. Hydrogr. Berl., 11, 263268.Google Scholar
Ibañez, C, 1884. Rapport sur I'état des travaux faits pour la détermination du niveau moyen des mers de I'Europe continentale. Verh. 7 Allg. Conf. Europ. Gradmessung. App., 5.Google Scholar
Jacoby, G., 1925. Beitrag zur Geschichte der Pegel. Bautechnik, 3, 438439.Google Scholar
Kolupaila, S., 1960. Early history of hydrometry in the United States.J Hydraul. Div. Am. Soc. Civ. Engrs, Hydraul, 1, 86, 151.Google Scholar
Lange, O., 1952. Entwicklung des Pegelwesens. Besond Mitt. Dt. Gewässerk. Jb., 4, 1023.Google Scholar
Lange, O., 1960. 150 Jahre deutsches Pegelwesen. Dt. Gewässerk. Mitt., 4, 13.Google Scholar
Lloyd., J. A., 1831. An account of operations carried on for ascertaining the difference of level between the River Thames at London Bridge and the seaPhil. Trans. Roy. Soc, 121, 174175.Google Scholar
Matthäus, W., 1968a. Water-level measurements of Antiquity. Bull. Inst. Oceanogr. Monaco, 2, 16.Google Scholar
Matthäus, W., 1968b. Zur Geschichte des Hochseepegels. NTM-Schriftenr. Gesch. Naturw. Techn. Med. Lpz, 5, 101112. (See also translation into English and French: Matthaus, W., 1969, On the history of the high seas tide gauge, WHOI Techn. Mem., 5–69, 7–19; Matthäus, W., 1970, Contribution à I'histoire du marégraphe de haute mer, Cah. Oceanogr.,22, 327–341.)Google Scholar
Matthäus, W., 1970a. Zur historischen Entwicklung der Methoden und Geräte zur Beobachtung und Registrierung des Wasserstandes (Teil I). NTM—Schriftenr. Gesch. Naturw. Techn. Med. Lpz, 7, 4659.Google Scholar
Matthäus, W., 1970b. Zur historischen Entwicklung der Methoden und Geräte zur Beobachtung und Registrierung des Wasserstandes (Teil II). NTM—Schriftenr. Gesch. Naturw. Techn. Med. Lpz, 7, 71–97.Google Scholar
Meyer, H. A., Mobius, K., Karsten, G. and Hensen, V., 1873. Jber. Commn Wiss. Unters. Dt. Meere Kiel, 1871.Google Scholar
Palmer, H. R., 1831. Description of graphical register of tides and winds. Phil. Trans. Roy. Soc, 121, 209213.Google Scholar
Parkes, W., 1869. On the tides of Bombay and Kurrachee. Phil. Trans. Roy. Soc, 158, 685696.Google Scholar
Parkes, W., 1881. Correspondence on tidal instruments. Minut. Proc Instn Civ. Engrs, 65, 6571.Google Scholar
Peters, C. A. F., 1875. In Neumayer, G., Anleitung Wiss. Beob. Reisen. Berlin.Google Scholar
Reitz, F. H., 1884. Fluthmesser, System F. H. Reitz. Selbstwirkende Eintheilung, Registrierung der Wasserstände und Intergrirung für die mittlere Höhe. Hamburg.CrossRefGoogle Scholar
Roberts, E., 1881. Discussion on tidal instruments. Minut. Proc. Instn Civ. Engrs, 65, 3132.Google Scholar
Rohde, H., 1968. Wasserstandsänderung und Sturmfluthäufigkeit an der Elbemündung. Küste, 16, 3342.Google Scholar
Sadebeck, M., 1883. Register der Protokolle, Verhandlungen und Generalberichte für die Europäische Gradmessung vom Jahre 1861 bis zum Jahre 1880. Publnen K. Preuss. Geod. Inst.Google Scholar
Seibt, W., 1881. Das Mittelwasser der Ostsee bei Swinemünde. Publnen K. Preuss. Geod. Inst., 35–36.Google Scholar
Seibt, W., 1887. Der selbstregistrirende Pegel zu Travemünde. Z. InstrumentenKde, 7,717.Google Scholar
Seibt, W., 1891. Der selbsttatige Universalpegel zu Swinemünde, System Seibt—Fuess. Z. InstrumentenKde, 11, 351365.Google Scholar
Seibt, W., 1893. Der curvenzeichnende Controlpegel, System Seibt-Fuess. Zentbl. Bauverw., 13, 542543.Google Scholar
Thomson, W., 1881. The tide gauge, tidal harmonic analyser and tide predicter. Minut. Proc Instn Civ. Engrs, 65, 210.Google Scholar
Unwin, H., 1881. Correspondence on tidal instruments. Minut. Proc. Instn Civ. Engrs, 65, 7172.Google Scholar
Whewell, W., 1835. On the results of tide observations made in June 1834 at the Coast Guard Stations in Great Britain and Ireland. Phil. Trans. Roy. Soc, 125, 8390.Google Scholar
Whewell, W., 1836. Researches on the tides, sixth series: On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835. Phil. Trans. Roy. Soc, 126, 289341.Google Scholar
Seibt, W., 1838. Description of a new tide-gauge, constructed by Mr.T. G.Bunt, and erected on the eastern bank of the River Avon, in front of the Hotwell House, Bristol 1837. Phil. Trans. Roy. Soc, 128, 249251.Google Scholar