Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T08:46:46.587Z Has data issue: false hasContentIssue false

Novel methods of oestrogen deprivation for treatment of breast diseases

Published online by Cambridge University Press:  05 December 2011

Richard J. Santen
Affiliation:
Division of Endocrinology, The Pennsylvania State University, The Milton S. Hershey Medical Center, Hershey, PA 17033, U.S.A.
Get access

Synopsis

The breast can be deprived of oestrogen by blockade of the synthesis of oestradiol or of its precursors. In postmenopausal women, oestrogen synthesis occurs almost exclusively in extraglandular tissues. Thus, liver, muscle and fat, as well as other tissues, convert precursor androgens such as androstenedione and testosterone of adrenal origin to oestrone and oestradiol through the enzyme, aromatase. Breast cancer tissue and its surrounding stroma also contain aromatase which could potentially convert a biologically important amount of androgen to oestrogen. Sulphatases are present in multiple tissues including breast and act to reform free oestrogens from their conjugated derivatives. Each of the steps outlined (i.e. precursor androgen formation, aromatase, and sulphatase), serve as potential sites of blockade of oestrogen synthesis. Aromatase can be inhibited by either suicide or competitive inhibitors. In our studies, an imidazole inhibitor of aromatase which acts competitively (i.e. CGS 16949A) is 1000-fold more potent than aminoglutethimide and ten-fold more potent than 4-hydroxyandrostenedione in vitro. In sixteen postmenopausal women, doses 500-fold less than standard doses of aminoglutethimide inhibited plasma and urinary oestrogens measured by radioimmunoassay or GLC mass spectrometry to the same extent as with aminoglutethimide. The use of sulphatase inhibitors, another means of oestrogen deprivation, may potentially be feasible. Sulphatase inhibitors are active in vitro but currently lack potency and specificity for the sulphatase in breast cancer tissue itself.

In premenopausal women, the oestrogens are directly aromatised from androgens in ovarian tissues through the stimulatory influence of LH and FSH. Suppression of these gonatrophins with or without additional aromatase inhibitors provides a means of inhibiting oestrogen in premenopausal women. Aromatase inhibition, alone, will probably not be effective because of the reflex rise in LH and FSH observed. Our studies indicate effective suppression of oestradiol in premenopausal women with the GnRH superagonist analogue, Leuprolide. However, combined use of this superagonist analogue plus an aromatase inhibitor would have the advantage of blocking synthesis of oestrogen, both in ovary and in extraglandular sites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abul-Hajj, Y. J., Iverson, R. & Kiang, D. T. 1979. Aromatization of androgens by human breast cancer. Steroids 33, 205222.CrossRefGoogle ScholarPubMed
Adams, J. B. & Li, K. 1975. Biosynthesis of 17-beta-oestradiol in human breast carcinoma tissue and a novel method for its characterization. British Journal of Cancer 31, 429433.CrossRefGoogle Scholar
Bradlow, H. L. 1982. A reassessment of the role of breast tumour aromatization. Cancer Research 42 (Suppl), 3382S3386S.Google ScholarPubMed
Brodie, A. M. & Santen, R. J. 1986. Aromatase in breast cancer and the role of aminoglutethimide and other aromatase inhibitors. In CRC Critical Reviews in Oncology/ Hematology, pp. 361396.Google Scholar
Channing, C. P. & Segal, S. (eds.), 1981. Intraovarian Control Mechanisms. New York: Plenum Press.Google Scholar
Clayton, R. N., Bailey, L. C., Cottam, J., Arkell, D., Perren, T. J. & Blackledge, G. R. P. 1985. Radioimmunoassay for GnRH agonist analog in serum of patients with prostate cancer treated with D-ser(tBu)6 AZA Gly10-GnRH. Clinical Endocrinology 22, 453462.CrossRefGoogle ScholarPubMed
Davidson, N. E. & Lippman, M. E. 1987. Stimulation of breast cancer with estrogens. How much clinical value? European Journal of Cancer and Clinical Oncology 23, 897900.CrossRefGoogle ScholarPubMed
de Hertogh, R., Vanderheyden, I. & Ekka, E. 1977. Stimulation of early protein synthesis in the uterus of the ovariectomized rat by continuous infusion of [3H]estradiol-17beta in vivo. II. Relationship with infusion rates and tissue concentrations. Journal of Steroid Biochemistry 8, 965969.CrossRefGoogle Scholar
Dowsett, M., Jeffcoate, S. L., Santner, S., Santen, R. J., Stuart-Harris, R. & Smith, D. E. 1985. Low-dose aminoglutethimide and aromatase inhibitors. Lancet 1, 175176.CrossRefGoogle Scholar
Edery, M., Goussard, J., Dehennin, L., Scholler, R., Reiffsteck, J. & Drosdowsky, M. S. 1981. Endogenous estradiol 17beta concentration in breast tumours determined by mass fragmentography and by radioimmunoassay: relationship to receptor content. European Journal of Cancer 17, 115120.CrossRefGoogle ScholarPubMed
Judd, H. L., Judd, G. E., Lucas, W. E. & Yen, S. E. 1974. Endocrine function of the postmenopausal ovary: concentration of androgens and estrogens in ovarian and peripheral vein blood. Journal of Clinical Endocrinology and Metabolism 39, 10201024.CrossRefGoogle ScholarPubMed
Kirschner, M. A. 1979. The role of hormones in the development of human breast cancer. In Breast Cancer, Advances in Research and Treatment, Current Topics, ed. McGuire, W. L., Vol. 3, pp. 119226. New York: Plenum Press.Google Scholar
Knecht, M., Brodie, A. M. & Catt, K. J. 1985. Aromatase inhibitors prevent granulosa cell differentiation: An obligatory role for estrogens in luteinizing hormone receptor expression. Endocrinology 117, 11561161.CrossRefGoogle ScholarPubMed
Lancaster, S., English, H. F., Demers, L. & Manni, A. 1987. Hormonal responsiveness of heterogeneous populations of experimental breast cancer cells in vivo: Kinetic and morphometric studies. Cancer Research 48, 32763281.Google Scholar
Larsen, P. R. 1982. Thyroid-pituitary interactions. Feedback regulation of thyrotropin secretion by thyroid hormones. New England Journal of Medicine 306, 2332.Google ScholarPubMed
Larsen, P. R., Silva, J. E. & Kaplan, M. M. 1981. Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocrine Reviews 2, 87102.CrossRefGoogle ScholarPubMed
Longcope, C. 1972. The metabolism of oestrone sulfate in normal males. Journal of Clinical Endocrinology and Metabolism 34, 113122.CrossRefGoogle Scholar
Longcope, C. 1982. Methods and results of aromatization studies in vivo. Cancer Research 42 (Suppl), 3307S3311S.Google ScholarPubMed
MacIndoe, J. H. 1979. Estradiol formation from testosterone by continuously cultured human breast cancer cells. Journal of Clinical Endocrinology and Metabolism 49, 272277.CrossRefGoogle ScholarPubMed
Meldrum, D. R., Davidson, B. J., Tataryn, I. V. & Judd, H. L. 1981. Changes in circulating steroids with aging in postmenopausal women. Obstetrics and Gynecology 57, 624628.Google ScholarPubMed
Miller, W. R., Hawkins, R. A. & Forrest, A. P. M. 1981. Steroid metabolism and oestrogen receptors in human breast carcinomas. European Journal of Cancer and Clinical Oncology 17, 913917.CrossRefGoogle ScholarPubMed
Nicholson, R. I. & Walker, K. J. 1989. Use of LH-RH agonists in the treatment of breast disease. Proceedings of the Royal Society of Edinburgh 95B, 271281.Google Scholar
Panko, W. B., Watson, C. S. & Clark, J. H. 1981. The presence of a second steroid specific oestrogen binding site in human breast cancer. Journal of Steroid Biochemistry 14, 13111316.CrossRefGoogle ScholarPubMed
Santen, R. J. 1986a. Aromatase inhibitors for treatment of breast cancer: current concepts and new perspectives. Breast Cancer Research and Treatment 7 (Suppl), 2336.Google ScholarPubMed
Santen, R. J. 1986b. Determinants of tissue oestradiol levels in human breast cancer. Cancer Surveys 5, 597616.Google ScholarPubMed
Santen, R. J., Samojlik, E. & Wells, S. A. 1980. Resistance of the ovary to blockade of aromatization with aminoglutethimide. Journal of Clinical Endocrinology and Metabolism 51, 462477.CrossRefGoogle ScholarPubMed
Santen, R. J., Worgul, T. J., Lipton, A., Harvey, H., Boucher, A., Samojlik, E. & Wells, S. A. 1982. Aminoglutethimide as treatment of postmenopausal women with advanced breast cancer: correlation of clinical and hormonal responses. Annals of Internal Medicine 96, 94101.CrossRefGoogle Scholar
Santen, R. J., Van den Bossche, H., Symoens, J., Brugmans, J. & DeCoster, R. 1983. Site of action of low dose ketoconazole on androgen biosynthesis in men. Journal of Clinical Endocrinology and Metabolism 57, 732736.CrossRefGoogle ScholarPubMed
Santen, R. J., Boucher, A. E., Santner, S. J. & Harvey, J. 1986a. Inhibition of aromatase as treatment of breast carcinoma in postmenopausal women. Journal of Laboratory and Clinical Medicine 109, 278289.Google Scholar
Santen, R. J., Manni, A. & Harvey, H. 1986b. Gonadotropin releasing hormone (GnRH) analogs for the treatment of breast and prostatic carcinoma. Breast Cancer Research and Treatment 7, 129145.CrossRefGoogle ScholarPubMed
Santen, R. J., Demers, L. M., Adlercreutz, H., Harvey, H., Santner, S., Sanders, S. & Lipton, A. 1989. Inhibition of aromatase with CGS 16949A in postmenopausal women. Journal of Clinical Endocrinology and Metabolism 68, 000–000.CrossRefGoogle ScholarPubMed
Santen, R. J. & Brodie, A. M. H. 1982. Suppression of oestrogen production as treatment of breast carcinoma. Pharmacologic and clinical studies with aromatase inhibitors. In Clinics in Oncology, ed. Furr, B. J. A., Vol. 1, pp. 77130. New York: W. B. Saunders.Google Scholar
Santen, R. J. & Henderson, I. C. (eds). 1982. Pharmanual. A Comprehensive Guide to the Therapeutic use of Aminoglutethimide. Basel: Karger.Google Scholar
Santer, S. J., Feil, P. D. & Santen, R. J. 1984. In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. Journal of Clinical Endocrinology and Metabolism 59, 2933.CrossRefGoogle Scholar
Schieweck, K., Bhatnagar, A. S. & Matter, A. 1988. CGS 16949A, a new nonsteroidal aromatase inhibitor: Effects on hormone-dependent and -independent tumors in vivo. Cancer Research 48, 834838.Google ScholarPubMed
Siiteri, P. K. & MacDonald, P. C. 1973. Role of extraglandular estrogens in human endocrinology. In Handbook of Physiology, eds. Geiger, S. R., Astwood, E. B. & Greep, R. O., Vol. II, Part 1, pp. 615629. Bethesda: American Physiological Society.Google Scholar
Siiteri, P. K. & Wilson, J. D. 1970. Dihydrotestosterone in prostatic hypertrophy. I. The formation and content of dihydrotestosterone in the hypertrophic prostate of man. Journal of Clinical Investigation 49, 17371745.CrossRefGoogle ScholarPubMed
Sonino, N. 1987. The use of ketoconazole as an inhibitor of steroid production. New England Journal of Medicine 317, 812818.Google ScholarPubMed
Steele, R. E., Mellor, L. B., Sawyer, W. K., Wasvary, J. M., Browne, L. J. 1987. In vitro and in vivo studies demonstrating potent and selective estrogen inhibition with the nonsteroidal aromatase inhibitor, CGS 16949A. Steroids 50, 147161.CrossRefGoogle ScholarPubMed
Tilson-Mallett, N., Santner, S. J., Feil, P. D. & Santen, R. J. 1983. Biologic significance of aromatase activity in human breast cancer. Journal of Clinical Endocrinology and Metabolism 57, 11251128.CrossRefGoogle Scholar
van Landeghem, A. A. J., Poortman, J., Nabuurs, M. & Thijssen, J. H. H. 1985. Endogenous concentration and subcellular distribution of oestrogens in normal and malignant human breast tissue. Cancer Research 45, 29002906.Google ScholarPubMed
Vermeulen, A. & Deslypere, J. P. 1989. Biosynthesis of active oestrogens in the breast. Proceedings of the Royal Society of Edinburgh 95B, 195201.Google Scholar
Weisz, J. 1982. In vitro assays of aromatase and their role in studies of oestrogen formation in target tissues. Cancer Research 42 (Suppl), 3295S3298S.Google ScholarPubMed
Wenderoth, U. K., George, F. W. & Wilson, J. D. 1983. The effect of a 5-alpha-reductase inhibitor on androgen-mediated growth of the dog prostate. Endocrinology 113, 569573.CrossRefGoogle ScholarPubMed