Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:19:33.420Z Has data issue: false hasContentIssue false

Life-history studies of ferns: a consideration of perspective

Published online by Cambridge University Press:  05 December 2011

Michael I. Cousens
Affiliation:
Department of Biology, University of West Florida, Pensacola, Florida 32504, U.S.A.
Deborah Grimm Lacey
Affiliation:
Department of Biology, University of West Florida, Pensacola, Florida 32504, U.S.A.
Eugene M. Kelly
Affiliation:
Department of Biology, University of West Florida, Pensacola, Florida 32504, U.S.A.
Get access

Synopsis

Autecology of pteridophytes may be refined by defining the plant community and habitat, and phytogeographic occurrence, of the species studied. Work with Blechnum spicant in the Pacific Northwest, and with Lorinserea areolata in the Southeastern U.S.A. has uncovered autecological differences for these species across habitats differing in overstory and hydrology. Natural history observations are necessary to suggest the most appropriate hypotheses to investigate objectively. A modification of Daubenmire's Canopy-Coverage method provides a grid across which many factors may be recorded or tested in repeatable objective manner. Such an analysis was used to test the association between L. areolata life-history classes and hummocks in hardwood swamps. Contingency tables were used to disprove the null hypothesis that L. areolata was distributed randomly with regard to hummocks. Hummocks were thus ‘safe sites’ for the completion of the life-cycle of L. areolata, and additional considerations of safe sites for Lygodium japonicum and Dryopteris ludoviciana are introduced. Analysis of biomass and coverage of Onoclea sensibilis where it is very abundant suggests that it is highly susceptible to competition where it shares plots with L. areolata. The concept of the optimum habitat with regard to abundance of the taxon, frequency of the habitat-type, successful reproduction, and susceptibility to competition between similar life forms is discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cousens, M. I. 1975. Gametophyte sex expression in some species of Dryopteris. Am. Fern J. 65, 3942.Google Scholar
Cousens, M. I. 1979. Gametophyte ontogeny, sex expression, and genetic load as measures of population divergence in Blechnum spicant. Am. J. Bot. 66, 116132.Google Scholar
Cousens, M. I. 1980. Fern gametophyte colonization following tree-fall. Misc. Publs Bot. Soc. Am. 158, 25.Google Scholar
Cousens, M. I. 1981. Blechnum spicant: habitat and vigor of optimal, marginal, and disjunct populations, and field observations of gametophytes. Bot. Gaz. 142, 251258.Google Scholar
Cousens, M. I. Lacey, D. Grimm and Scheller, J. M. 1985. Safe sites and the ecological life-history of Lorinseria areolata. Submitted.Google Scholar
Cranfill, R. 1983. The distribution of Woodwardia areolata. Am. Fern J. 73, 4652.Google Scholar
Daubenmire, R. 1959. A canopy-coverage method of vegetation analysis. NW. Sci. 33, 6364.Google Scholar
Daubenmire, R. 1968. Plant communities: A textbook of plant synecology. New York: Harper and Row.Google Scholar
Daubenmire, R. 1978. Plant geography with special reference to North America. New York: Academic Press.Google Scholar
Dyer, A. F. (Ed.) 1979. The experimental biology of ferns. New York: Academic Press.Google Scholar
Farrar, D. R. 1978. Problems in the identity and origin of the Appalachian Vittaria gametophyte, a sporophyteless fern of the eastern United States. Am. J. Bot. 65, 112.Google Scholar
Farrar, D. R. and Gooch, R. D. 1975. Fern reproduction at Woodman Hollow, central Iowa: Preliminary observations and a consideration of the feasibility of studying fern reproductive biology in nature. Proc. Iowa Acad. Sci. 82, 119122.Google Scholar
Gastony, G. J. and Gottleib, L. D. 1982. Evidence for genetic heterozygosity in a homosporous fern. Am. J. Bot. 69, 634637.CrossRefGoogle Scholar
Gilbert, O. L. 1970. Biological flora of the British Isles: Dryopteris villarii (Bellari) Woynar. J. Ecol. 58, 301313.Google Scholar
Grime, J. P. 1979. Plant strategies and vegetation processes. New York: Wiley.Google Scholar
Grime, J. P. 1985. Factors limiting the contribution of pteridophytes to a local flora. Proc. Roy. Soc. Edinb. 86B. 403421.Google Scholar
Grimm, D. A. and Cousens, M. I. 1981. An autecological comparison of two sympatric ferns. Misc. Publs. Bot. Soc. Am. 160, 58.Google Scholar
Harper, J. L. 1977. The population biology of plants. London: Academic Press.Google Scholar
Haufler, C. H. 1984. Pteridophyte evolutionary biology: the electrophoretic approach. Proc. Roy. Soc. Edinb. 86B, 315323.Google Scholar
Kelly, E. M. 1985. A demographic study of the fern Dryopteris ludoviciana. M.S. thesis. Univ. West Florida, Pensacola, Florida.Google Scholar
Klekowski, E. J. Jr., 1970. Populational and genetic studies of a homosporous fern—Osmunda regalis. Am. J. Bot. 47, 11221138.Google Scholar
Klekowski, E. J. Jr., 1973. Genetic load in Osmunda regalis populations. Am. J. Bot. 60, 146154.CrossRefGoogle Scholar
Kruckeberg, A. R. 1964. Ferns associated with ultramafic rocks in the Pacific Northwest. Am. Fern J. 54, 113126.Google Scholar
Lacey, D. Grimm. 1983. Comparative ecology of two sympatric ferns, Onoclea sensibilis and Lorinseria areolata. M. S. thesis. Univ. West Florida, Pensacola, Florida.Google Scholar
Lloyd, R. M. 1974. Mating system and genetic load in pioneer and non-pioneer Hawaiian pteridophyta. Bot. J. Linn. Soc. 69, 2335.Google Scholar
Miller, J. H. 1968. Fern gametophytes as experimental material. Bot. Rev. 34, 361440.Google Scholar
Nobel, P. S. 1978. Microhabitat, water relations, and photosynthesis of a desert fern, Notholaena parryi. Oecologia 31, 293309.Google Scholar
Page, C. N. 1982. The ferns of Britain and Ireland. Cambridge: Cambridge University Press.Google Scholar
Parsons, F. T. 1899. How to know the ferns. New York: Charles Scribner (Dover reprint edition, 1961).Google Scholar
Petersen, R. L. 1985. Towards an appreciation of fern edaphic niche requirements. Proc. Roy. Soc. Edinb. 86B, 93103.Google Scholar
Pickett, F. L. 1914. Some ecological considerations of certain fern prothallia—Camptosorus rhizophyllus Link., Asplenium platyneuron Oakes. Am. J. Bot. 1, 477498.Google Scholar
Schefler, W. C. 1979. Statistics for the biological sciences. Reading, Mass.: Addison-Wesley.Google Scholar
Schneller, J. J. 1975. Untersuchungen an einheimischen Farnen, insbesondere der Dryopteris filix-mas Gruppe 3. Teil. Ökologische Untersuchungen. Ber. Schweiz. Bot. Ges. 85, 110159.Google Scholar
Sleep, A. 1984. Speciation in relation to edaphic factors in the Asplenium adiantum-nigrum group. Proc. Roy. Soc. Edinb. 86B, 325334.Google Scholar
Soltis, D. E., Haufler, C. H., Darrow, D. C. and Gastomy, G. J. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 927.Google Scholar
Steele, R. W. 1971. Red alder habitats in Clearwater Co., Idaho. M. S. thesis. Univ. of Idaho, Moscow, Idaho.Google Scholar
Taylor, T. M. C. 1970. Pacific northwest ferns and their allies. Toronto and Buffalo: Univ. of Toronto Press.Google Scholar
Wherry, E. T. 1961. The fern guide. Garden City, New York: Doubleday.Google Scholar
Wherry, E. T. 1964. The southern fern guide. Garden City, New York: Doubleday (Corrected edition).Google Scholar
Wilmot, A. J. 1984. Population dynamics of woodland Dryopteris in Britain. Proc. Roy. Soc. Edinb. 86B, 307313.Google Scholar