Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:10:04.223Z Has data issue: false hasContentIssue false

Inputs of trace gases, particles and cloud droplets to terrestrial surfaces

Published online by Cambridge University Press:  05 December 2011

D. Fowler
Affiliation:
Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K.
J. H. Duyzer
Affiliation:
TNO Institute of Environmental Sciences, PO Box 6011, 2600JA AG Delft, The Netherlands
D. D. Baldocchi
Affiliation:
Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, PO Box 2456, Oak Ridge, TN 37831, U.S.A.
Get access

Synopsis

The deposition of reactive gases on terrestrial surfaces is one of the primary mechanisms by which pollutant gases are removed from the atmosphere. The chemical properties of the gases (SO2, NO2, HNO3, HCl) and of the absorbing surfaces lead to differing rates of exchange and controlling processes. The most reactive gases, HNO3, HCl (and for many surfaces NH3) exhibit negligible surface resistances; deposition velocities (Vg) appropriate for short vegetation ranging from 2 to 5 cm s−1, for forests Vg may approach 10 cm s−1. The large rates of deposition for NH3 on moorland and forests lead to annual inputs, in areas with large atmospheric concentrations of NH3 (≥ 5 μg NH3 m−3), ranging from 20 to 60 kg N ha−1. The net exchange of NH3 over cropland, attributable to deposition during vegetative growth and emission of NH3 during senescence, is less well known but believed to be small.

The co-deposition of NH3 and SO2 on external surfaces of plant canopies is believed to enhance SO2deposition with reported deposition velocities over short vegetation of 2.0 cm s−1.

Rates of cloud droplet deposition to vegetation have been shown to be very similar to rates of momentum deposition (i.e. Vtram−1). These findings provide the basis for estimates of cloud deposition inputs of major ions to upland Britain where they may contribute up to 30% of the wet deposited sulphur and nitrogen.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adema, E. H. 1986. On the dry deposition of NO2, SO2 and NH3 on wet surfaces in a small scale wind tunnel. Proceeding of the 7th World clean air congress, Sydney, p. 1.18.Google Scholar
Baldocchi, D. D. & Meyers, T. P. 1988. Turbulence structure in a deciduous forest. Boundary-Layer Meteorology 43, 345–64.CrossRefGoogle Scholar
Baldocchi, D. D., Hicks, B. B. & Camara, P. 1987. A Canopy Stomatal Resistance Model for Gaseous Deposition in Vegetated Surfaces. Atmospheric Environment 21, 91101.CrossRefGoogle Scholar
Beswick, K. M., Hargreaves, K. J., Gallagher, M. W., Choularton, T. W. & Fowler, D. 1991. Size resolved measurements of cloud deposition velocity to a forest canopy using an eddy correlation technique. Quarterly Journal of the Royal Meteorological Society (in press).CrossRefGoogle Scholar
Buijsman, E. 1987. Ammonia emission calculation: fiction and reality. In Ammonia and Acidification, RUM/TNO, pp. 1328, eds, Asman, W. A. H. & Diederen, H. S. M. A. EURASAP Symposium, Bilthoven, April 1987.Google Scholar
Chamberlain, A. C. 1966. Transport of gases to and from grass and grass-like surfaces. Proceedings of the Royal Society of London, A 290, 236–65.Google Scholar
Chamberlain, A. C. 1975. The movement of particles in plant communities. In Vegetation and the Atmosphere, Vol.1, pp. 115201, ed, Monteith, J. L. London: Academic Press.Google Scholar
Chamberlain, A. C., Garland, J. A. & Wells, A. C. 1984. Transport of gases and particles to surfaces with widely spaced roughness elements. Boundary-Layer Meteorology 29, 343–60.CrossRefGoogle Scholar
Choularton, T. W., Consterdine, I. E.. Gardiner, B. A., Gay, M. J., Hill, M. K., Latham, J. & Stromberg, I. M. 1986. Field studies of the optical and microphysical characteristics of clouds enveloping Great Dun Fell. Quarterly Journal of the Royal Meteorological Society 112, 131–48.CrossRefGoogle Scholar
Dabney, S. M. & Bouldin, D. R. 1985. Fluxes of ammonia over an alfalfa field. Agron. J. 77, 572–8.CrossRefGoogle Scholar
Denmead, O. T., Simpson, J. R. & Freney, J. R. 1974. Ammonia flux into the atmosphere from a grazed pasture. Science 185, 609–10.CrossRefGoogle ScholarPubMed
Dollard, G. J., Unsworth, M. H. & Harvey, M. J. 1983. Pollutant transfer in upland regions by occult precipitation. Nature (Lond.) 302, 241–3.CrossRefGoogle Scholar
Dollard, G. J., Davies, T. J. & Lundstrom, J. P. C. 1987. Measurements of the dry deposition rates of some trace gas species. In Physico–Chemical Behaviour of Atmospheric Pollutants, pp. 470–79, eds, Angeletti, G. & Restelli, G. Dordrecht: Reidel.CrossRefGoogle Scholar
Duyzer, J. H., Bowman, A. M. H., Diederen, H. M. S. A. & von Aalst, R. M. 1987. Measurements of dry deposition velocities of NH3 and NH4 over natural terrains. Research Report No R87/273 Netherlands Organization for Applied Scientific Research (TNO).Google Scholar
Duyzer, J. H., Verhagen, H. L. M. & Westrate, J. H. 1991. Dry deposition of NH3 over forest. Environmental Pollution (in press).CrossRefGoogle Scholar
Erisman, J. W., de Leeuw, F. A. A. M. & van Aalst, R. M. 1987. Depositie van de voor verzuring in Nederland belangrijkste componenten in de jaren 1980–1986 (Deposition of the most important acidifying components in The Netherlands in 1980–1986). RIVM, Bilthoven, Report 228473001, 57 pp.Google Scholar
Farquhar, G. D., Firth, P. M., Wetsetaar, R. & Wier, B. 1980. On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiology 66, 710–14.CrossRefGoogle ScholarPubMed
Fisher, B. E. A. 1978. The calculations of long term sulphur deposition in Europe. Atmospheric Environment 12, 489502.CrossRefGoogle Scholar
Fowler, D. & Cape, J. N. 1983. Dry deposition of SO2 onto a Scots pine forest. In Precipitation Scavenging, Dry Deposition and Resuspension, pp. 763–74, eds, Pruppacher, H. R., Semohin, R. G. & Slinn, W. G. N. New York. Elsevier.Google Scholar
Fowler, D. & Unsworth, M. H. 1979. Turbulent transfer of sulphur dioxide to a wheat crop. Quarterly Journal of the Royal Meteorological Society 105, 767–84.CrossRefGoogle Scholar
Fowler, D., Cape, J. N., Leith, I. D., Choularton, T. W., Gay, M. J. & Jones, A. 1988. The influence of altitude on rainfall composition at Great Dun Fell. Atmospheric Environment 22, 1355–62.CrossRefGoogle Scholar
Fowler, D., Cape, J. N. & Unsworth, M. H. 1989. Deposition of atmospheric pollutants on forests. Philosophical Transactions of the Royal Society of London (B) 324, 247–65.Google Scholar
Gallagher, M. W., Choularton, T. W., Morse, A. P. & Fowler, D. 1988. Measurements of the size dependence of cloud droplet deposition at a hill site. Quarterly Journal of the Roval Meteorological Society 114, 1291–303.CrossRefGoogle Scholar
Gallagher, M. W., Beswick, K., Choularton, T. W., Fowler, D. & Hargreaves, K. J. 1991. Measurements of cloudwater deposition to a moorland and a forest canopy. Environmental Pollution (in press).CrossRefGoogle Scholar
Garland, J. A. 1969. Condensation on ammonium sulphate particles and its effect on visibility. Atmospheric Environment 3, 347–54.CrossRefGoogle Scholar
Garland, J. A. 1978. Dry and wet removal of sulphur from the atmosphere. Atmospheric Environment 12, 349–62.CrossRefGoogle Scholar
Goldsmith, P., Delafield, H. J. & Cox, L. C. 1963. The role of diffusionphorensis in the scavenging of radio-active particles from the atmosphere. Quarterly Journal of the Royal Meteorological Society 89, 4361.CrossRefGoogle Scholar
Hallgren, J. E., Under, S., Richter, A., Troeng, E. & Granat, L. 1982. Uptake of SO2 in shoots of Scots pine: field measurements of net fluxes of sulphur in relation to stomatal conductance. Plant, Cell and Environment 5, 7583.CrossRefGoogle Scholar
Hargreaves, K. J., Fowler, D., Storeton-West, R. L. & Duyzer, J. H. 1991. The exchange of Nitric Oxide, Nitrogen Dioxide and Ozone between pasture and the atmosphere. Environmental Pollution (in press).CrossRefGoogle Scholar
Heil, G. W. & Diemont, W. M. 1983. Raised nutrient levels change heathland into grassland. Vegetatio 53, 113–20.CrossRefGoogle Scholar
Hicks, B. B. & Matt, D. R. 1988. Combining biology, chemistry and meteorology in modelling and measuring dry deposition. Journal of Atmospheric Chemistry 6, 117–31.CrossRefGoogle Scholar
Hill, A. C. 1971. Vegetation: a sink for atmospheric pollutants. Journal of the Air Pollution Control Association 21, 341–46.CrossRefGoogle ScholarPubMed
Hori, T. 1953. Studies on Fogs. Sapporo: Tanne Trading Co Ltd.Google Scholar
Hough, A. M. 1988. Atmospheric Chemistry at elevated sites. In Acid Deposition at High Elevation Sites, pp. 147, eds, Unsworth, M. H. & Fowler, D. Dordrecht: Kluwer.Google Scholar
Huebert, B. J. 1983. Measurements of the dry deposition flux of nitric acid vapour to grasslands and forests. In Precipitation Scavenging, Dry Deposition and Resuspension, pp. 785–94. eds, Pruppacher, H. R., Semonin, R. G. & Slinn, W. G. N. Elsevier: New York.Google Scholar
Husar, R. B. 1980. Sulphur in the Atmosphere. London: Academic Press.Google Scholar
Jarvis, P. G., James, G. B. & Landsberg, J. J. 1975. Coniferous forest. In Vegetation and the Atmosphere, Vol. 2, pp. 171240, ed, Monteith, J. L. London, Academic Press.Google Scholar
Jarvis, S. C., Hatch, D. J. & Lockyer, D. R. 1989. Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. Journal of Agricultural Sciences, Cambridge 113, 99208.CrossRefGoogle Scholar
Johansson, C. 1987. Pine forest: a negligible sink for atmospheric NOx in rural Sweden. Tellus 39B, 426–38.CrossRefGoogle Scholar
Law, R. M. & Mansfield, T. A. 1982. Oxides of nitrogen and the greenhouse atmosphere. In Effects of Gaseous Air Pollution in Agriculture and Horticulture, pp. 93112, eds, Unsworth, M. H. & Ormrod, D. P. London: Butterworths.CrossRefGoogle Scholar
Lee, J. A., Press, M. C., Woodin, S. & Ferguson, P. 1987. Responses to Acidic Deposition in Ombrotrophic Mines in the U.K. In Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems, pp. 549–60, eds, Hutchinson, T. C. & Meema, K. M. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Leuning, R., Unsworth, M. H., Neumann, H. H. & King, K. M. 1979. Ozone fluxes to tobacco and soil under field conditions. Atmospheric Environment 13, 1155–63.CrossRefGoogle Scholar
Lindberg, S. E. & Lovett, G. M. 1985. Field measurements of particle dry deposition rates to foliage and inert surfaces in a forest canopy. Environment Science Technology 19, 238–44.CrossRefGoogle Scholar
Liss, P. S. 1971. Exchange of SO2 between the atmosphere and natural waters. Nature 233, 327–9.CrossRefGoogle ScholarPubMed
Mansfield, T. A. & Freer-Smith, P. H. 1984. The role of stomata in resistance mechanisms. In Gaseous Pollutants and Plant Metabolism, pp. 131–46, eds, Koziol, M. J. & Whatley, F. R. London: Butterworths.CrossRefGoogle Scholar
Meyers, T. P. & Baldocchi, D. D. 1988. Comparison of models for deriving dry deposition fluxes of O3 and SO2 to a forest canopy. Tellus 40B, 270–84.CrossRefGoogle Scholar
Milne, R., Crossley, A. & Unsworth, M. H. 1989. Physics of cloudwater deposition and evaporation at Castlelaw, S.E. Scotland. In Acid Deposition Processes at High Elevation Sites, pp. 299307, eds, Unsworth, M. H. & Fowler, D. Dordrecht: Kluwer.Google Scholar
Monteith, J. L. 1973. Principles of Environmental Physics. London: Edward Arnold.Google Scholar
Mueller, S. F. 1988. Chemical deposition to high elevation spruce-fir forests in the eastern United States. Report submitted by the Mountain Cloud Chemistry Project (Mohnen V.A.) Albany, New York to the US EPA, Research Triangle Park, North Carolina. 98 pp.Google Scholar
Nihlgard, B. 1985. The ammonia hypothesis: An additional explanation to the forest dieback in Europe. Ambio 14, 28.Google Scholar
Payrissat, M. & Beilke, S. 1978. Laboratory measurements of the uptake of sulphur dioxide by different European soils. Atmospheric Environment 9, 211–17.CrossRefGoogle Scholar
Raupach, M. R., Coppin, P. A. & Legg, B. J. 1986. Experiments on scalar dispersion within a plant canopy, Part I: the turbulence structure. Boundary-Layer Meteorology 35, 2152.CrossRefGoogle Scholar
Raupach, M. R. 1987. A Lagrangian analysis of scalar transfer in vegetation canopies. Quarterly Journal of the Royal Meteorological Society 113, 107–20.CrossRefGoogle Scholar
Raupach, M. R. 1989. Stand overstorey processes. Philosophical Transactions of the Royal Society of London (B) 324, 175–90.Google Scholar
Rennenberg, H. 1984. The fate of excess sulphur in higher plants. Annual Review of Plant Physiology 35, 121–53.CrossRefGoogle Scholar
RGAR 1990. Acid deposition in the United Kingdom 1986–1988. In The Third Report of the United Kingdom Review Group on Acid Deposition. London: Department of the Environment.Google Scholar
Saxena, U. K., Stogner, R. E., Hendler, A. H., DeFelice, T. P., Yeh, R. J.-Y. & Lin, H. N. 1989. Monitoring the chemical climate of the Mt. Mitchell State Park for evaluating its impact on forest decline. Tellus (in press).CrossRefGoogle Scholar
Schmitt, G. 1988. Measurements of the chemical composition in cloud and fogwater. In Acid Deposition at High Elevation Sites, pp. 403–19, eds, Unsworth, M. H. & Fowler, D. Dordrecht: Kluwer.CrossRefGoogle Scholar
Slinn, W. G. N. 1982. Predictions for particle deposition to vegetative canopies. Atmospheric Environment 14, 1013–16.CrossRefGoogle Scholar
Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer.CrossRefGoogle Scholar
Sutton, M. A. 1990. The surface-atmosphere exchange of ammonia. Ph.D. Thesis, University of Edinburgh.Google Scholar
Sutton, M. A., Moncrieff, J. B. & Fowler, D. 1991. Deposition of atmospheric ammonia onto moorlands. Environmental Pollution (in press).CrossRefGoogle Scholar
Taylor, G. E. Jr. & Tingey, D. T. 1982. Sulfur dioxide flux into leaves of Geranium carolinianum L.: Evidence for a non-stomatal or residual resistance. Plant Physiology 72, 237–44.CrossRefGoogle Scholar
Thom, A. S. 1975. Momentum, mass and heat exchange of plant communities. In Vegetation and Atmosphere, pp. 58109, ed, Monteith, J. L. London: Academic Press.Google Scholar
Unsworth, M. H. 1981. The exchange of carbon dioxide and air pollutants between vegetation and the atmosphere. In Plants and their Atmospheric Environment, pp. 111–38, eds, Grace, J., Ford, E. D. & Jarvis, P. G. Oxford: Blackwell.Google Scholar
Unsworth, M. H. 1984. Evaporation from forests in cloud enhances the effects of acid deposition. Nature (Lond.) 312, 262–4.CrossRefGoogle Scholar
van Breeman, N. & van Dijk, H. F. G. 1988. Ecosystems effects of atmospheric deposition of nitrogen in the Netherlands. Environmental Pollution 54, 249–74.CrossRefGoogle Scholar
van Hove, L. W. A., Adema, E. H., Vrendenberg, W. J. & Pieters, G. A. 1989. A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmospheric Environment 23, 1479–86.CrossRefGoogle Scholar
Wesely, M. L., Eastman, J. A., Stedman, D. H. & Yelvac, E. D. 1982. An eddy-correlation measurement of NO2 flux to vegetation and comparison to Ozone flux. Atmospheric Environment 16, 815–20.CrossRefGoogle Scholar
Whitby, K. T. 1978. The physical characteristics of sulphur aerosols. Atmospheric Environment 12, 135–60.CrossRefGoogle Scholar
Wiman, B. L. B. 1988. Aerosol capture by complex forest architecture. In Vegetation Structure in Relation to Carbon and Nutrient Economy, pp. 157–83, eds. Verhoeven, J. T. A., Heil, G. W. & Werger, M. J. A. The Hague, Netherlands: SPB Academic Publishing.Google Scholar