Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T07:22:00.742Z Has data issue: false hasContentIssue false

The dynamics of organic production in the Rockall Channel area

Published online by Cambridge University Press:  05 December 2011

B. Zeitzschel
Affiliation:
Institut für Meereskunde an der Universität Kiel, Düsternbrooker Weg 20, 2300 Kiel, Germany
Get access

Synopsis

For the onset of the phytoplankton spring bloom in temperate waters, the irradiance, the concentration of accumulated nutrients and the stability of the water column are of great importance. The “new” production in spring is produced mainly by chain forming diatoms.

The dissipation of the spring bloom is due to nutrient depletion in the stabilised surface layer, loss of cells by sinking and grazing by herbivorous zooplankton. After the nutrient concentration is lowered, the rate of production will depend primarily on the rate of replenishment of nutrients. In open ocean environments we find “regenerated production” which is due to exudated and excreted nutrient salts e.g. ammonium. The dominating group of phytoplankters are small flagellates. It is argued that a substantial part of the phytoplankton standing stock in spring is lost from the euphotic zone due to direct sinking of cells or accelerated sinking of cell-aggregates. It is postulated that faecal pellets of micro- and mesozooplankton are retained and recycled in the mixed layer, whereas macrozooplankton faecal strings transport a considerable amount of organic matter to the benthal.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernard, F. 1939. Recherches sur les Coccolithophorides. I. Principales espèces du plancton à Monaco. Bulletin de l'Institut Océanographique, Monaco 767, 119.Google Scholar
Bernard, F. 1953. Role des flagellés calcaires dans la fertilité et la sédimentation en mer profonde. Deep-Sea Research 1, 3446.Google Scholar
Bernard, F. 1963. Vitesse de chute en mer des amas palmelloides de Cyclococcolithus. Ses conséquences pour le cycle vital des mers chaudes. Pelagos 1, 534.Google Scholar
Betzer, P. R., Showers, W. J., Laws, E. A., Winn, C. D., Diltullio, G. R. & Kroopnick, P. M. 1984. Primary production and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Research 31, 111.CrossRefGoogle Scholar
Billett, D. S. M., Lampitt, R. S., Rice, A. L. & Mantoura, R. F. C. 1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature, London 302, 520522.CrossRefGoogle Scholar
Bodungen, B. v., Brockel, K. v., Smetacek, V. & Zeitzschel, B. 1981. Growth and sedimentation of the phytoplankton spring bloom in the Bornholm Sea (Baltic Sea). Kieler Meeresforschungen 5, 4960.Google Scholar
Cadée, G. C. 1985. Macroaggregates of Emiliana huxleyi in sediment traps. Marine Ecology-Progress Series 24, 193196.CrossRefGoogle Scholar
Colebrook, J. M. 1986. Continuous Plankton Records: the distribution and standing crop of the plankton of the shelf and ocean to the west of the British Isles. Proceedings of the Royal Society of Edinburgh 88B, 221237.Google Scholar
Cushing, D. H. 1959. On the nature of production in the sea. Fishery Investigations 22, 140.Google Scholar
Davies, J. M. & Payne, R. 1984. Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom. Marine Biology 78, 315324.CrossRefGoogle Scholar
Deuser, W. G. & Ross, E. H. 1980. Seasonal change in the flux of organic carbon to the deep Sargasso Sea. Nature, London 283, 364365.CrossRefGoogle Scholar
Deuser, W. G. Ross, E. H. & Anderson, R. F. 1981. Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Research 28, 495505.CrossRefGoogle Scholar
Dugdale, R. C. & Goering, J. J. 1967. Uptake of new and regenerated forms of nitrogen in primary production. Limnology and Oceanography 12, 196206.CrossRefGoogle Scholar
Dunbar, R. B. & Berger, W. H. 1981. Fecal pellet flux to modern bottom sediment of Santa Barbara Basin (California) based on sediment trapping. Bulletin of the Geological Society of America 92, 212218.2.0.CO;2>CrossRefGoogle Scholar
Ellett, D. J. 1986. The hydrography of the Rockall Channel—an overview. Proceedings of the Royal Society of Edinburgh 88B, 6181.Google Scholar
Eppley, R. W., Renger, E. H. & Betzer, P. R. 1983. The residence time of particulate organic carbon in the surface layer of the ocean. Deep-Sea Research 30, 311323.CrossRefGoogle Scholar
Fasham, M. J. R., Holligan, P. M. & Pugh, P. R. 1983. The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea, April 1979. Progress in Oceanography 12, 87145.CrossRefGoogle Scholar
Ferrante, J. G. & Parker, J. I. 1977. Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan. Limnology and Oceanography 22, 9298.CrossRefGoogle Scholar
Gage, J. D. 1986. The benthic fauna of the Rockall Trough: regional distribution and bathymetric zonation. Proceedings of the Royal Society of Edinburgh 88B, 159174.Google Scholar
Gran, H. H. & Braarud, T. 1935. A quantitative study of phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity). Journal of the Biological Board of Canada 1, 279467.CrossRefGoogle Scholar
Harvey, H. W., Cooper, L. H. N., Lebour, M. V. & Russell, F. S. 1935. Plankton production and its control. Journal of the Marine Biological Association of the United Kingdom 20, 407–42.CrossRefGoogle Scholar
Holligan, P. M. & Groom, S. 1986. Phytoplankton distributions along the shelf break. Proceedings of the Royal Society of Edinburgh 88B, 239263.Google Scholar
Holligan, P. M., Viollier, M., Harbour, D. S., Camus, P. & Champagne-Philippe, M. 1983. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature, London 304, 339342.CrossRefGoogle Scholar
Honjo, S. 1982. Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, N.Y. 218, 883884.CrossRefGoogle ScholarPubMed
Honjo, S. 1984. Study of ocean fluxes in time and space by bottom-tethered sediment trap arrays: a recommendation. In Global Ocean Flux Study, pp. 306324. Proceedings of a Workshop, Woods Hole Institution, Sept. 1984. Washington: National Academic Press.Google Scholar
Honjo, S., Manganini, S. J. & Cole, J. J. 1982. Sedimentation of biogenic matter in the deep ocean. Deep- Sea Research 29, 609625.CrossRefGoogle Scholar
Iseki, K. 1981. Particulate organic matter transport to the deep sea by salp fecal pellets. Marine Ecology-Progress Series 5, 5560.CrossRefGoogle Scholar
Knauer, G. A., Martin, J. H. & Bruland, K. W. 1979. Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the north-east Pacific. Deep-Sea Research 26, 97108.CrossRefGoogle Scholar
Krause, M. 1981. Vertical distribution of faecal pellets during FLEX ’76 Helgoländer Meeresuntersuchungen 34, 313327.CrossRefGoogle Scholar
Lampitt, R. S. 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Research 32, 885897.CrossRefGoogle Scholar
Lohmann, H. 1920. Die Bevölkerung des Ozeans mit Plankton. Archiv für Biontologie 4, 1617.Google Scholar
Lorenzen, C. J. & Welschmeyer, N. A. 1983. The in situ sinking rates of herbivore fecal pellets. Journal of Plankton Research 5, 929933.CrossRefGoogle Scholar
MacArthur, R. H. & Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton: University Press.Google Scholar
Malone, T. C. 1971. The relative importance of nanoplankton and netplankton as primary producers in tropical oceanic and neritic phytoplankton communities. Limnology and Oceanography 16, 633639.CrossRefGoogle Scholar
Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Ada 1, 493509.Google Scholar
Mauchline, J. 1986. A review of the ecology of the deep-water pelagic fauna of the Rockall Trough. Proceedings of the Royal Society of Edinburgh 88B, 145157.Google Scholar
Milliman, J. D. 1980. Coccolithophorid production and sedimentation, Rockall Bank. Deep-Sea Research 27A, 959963.CrossRefGoogle Scholar
Peinert, R. 1985. Saisonale und regionale Aspekte der Produktion und Sedimentation von Partikeln im Meer. Ph.D. Thesis, Kiel University.Google Scholar
Pianka, E. R. 1970. On r- and -selection. The American Naturalist 104, 592597.CrossRefGoogle Scholar
Pingree, R. D., Holligan, P. M. & Marsdell, G. T. 1978. The effects of vertical stability on phytoplankton distributions in the summer on the north-west European shelf. Deep-Sea Research 25, 10111028.CrossRefGoogle Scholar
Pingree, R. D. & Mardell, G. T. 1981. Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea shelf-break. Philosophical Transactions of the Royal Society of London 302A, 663682.Google Scholar
Platt, T., Mann, K. H. & Ulanowicz, R. E. (eds.) 1981. Mathematical Models in biological oceanography. Paris: Unesco Press.Google Scholar
Rice, A. L., Billett, D. S. M., Fry, J., John, A. W. G., Lampitt, R. S., Mantoura, R. F. C. & Morris, R. J. 1986. Seasonal deposition of phytodetritus to the deep-sea floor. Proceedings of the Royal Society of Edinburgh 88B, 265279.Google Scholar
Richardson, K., Beardall, J. & Raven, J. A. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytologist 93, 157191.CrossRefGoogle Scholar
Robinson, G. A. 1970. Continuous plankton records: variation in the seasonal cycle of phytoplankton in the North Atlantic. Bulletins of Marine Ecology 6, 333345.Google Scholar
Rowe, G. T. & Gardner, W. D. 1979. Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps. Journal of Marine Research 37, 581600.Google Scholar
Schiller, J. 1925. Die planktonischen Vegetationen des adriatischen Meeres. Archiv für Protistenkunde 51, 1128.Google Scholar
Schrader, H. J. 1971. Fecal pellets in sedimentation of pelagic diatoms. Science, N.Y. 174, 5567.CrossRefGoogle ScholarPubMed
Scrutton, R. A. 1986. The geology, crustal structure and evolution of Rockall Trough and the Faeroe- Shetland Channel. Proceedings of the Royal Society of Edinburgh 88B, 726.Google Scholar
Sieburth, J. McN., Smetacek, V. & Lenz, J. 1978. Pelagic ecosystem structure: heterotrophic compartments of plankton and their relationship to plankton size fractions. Limnology and Oceanography 23, 12561263.CrossRefGoogle Scholar
Smayda, T. J. 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology, An Annual Review 8, 353414.Google Scholar
Smayda, T. J. 1971. Normal and accelerated sinking of phytoplankton in the sea. Marine Geology 11, 105122.CrossRefGoogle Scholar
Smetacek, V. S. 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology 84, 239251.CrossRefGoogle Scholar
Smetacek, V. S., Bodungen, B. v., Nöthig, E.-M. & Bathmann, U. 1985. Sedimentation of plankton diatoms in the Antarctic: evidence of a mechanism for accelerated sinking rates. Deep-Sea Research (submitted).Google Scholar
Smetacek, V. S., Bröckel, K. v., Zeitzschel, B. & Zenk, W. 1978. Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Marine Biology 47, 211226.CrossRefGoogle Scholar
Sournia, A. 1982. Form and function in marine phytoplankton. Biological Reviews of the Cambridge Philosophical Society 57, 347394.CrossRefGoogle Scholar
Steele, J. H. 1974. The structure of marine ecosystems. Cambridge, Mass.: Harvard University Press.CrossRefGoogle Scholar
Steele, J. H. 1976. Patchiness. In The Ecology of the Seas, eds. Cushing, D. H. & Walsh, J. J., pp. 98115. Oxford, London, Edinburgh, Melbourne: Blackwell Scientific Publications.Google Scholar
Suess, E. 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, London 288, 260263.CrossRefGoogle Scholar
Sverdrup, H. U. 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil 18, 287295.CrossRefGoogle Scholar
Urrere, M. A. & Knauer, G. A. 1981. Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment. Journal of Plankton Research 3, 369387.CrossRefGoogle Scholar
Walsh, J. J. 1983. Death in the sea: enigmatic phytoplankton losses. Progress in Oceanography 12, 186.CrossRefGoogle Scholar
Welschmeyer, N. A. & Lorenzen, C. J. 1985. Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnology and Oceanography 30, 121.CrossRefGoogle Scholar
Woods, J. D. & Onken, R. 1982. Diurnal variation and primary production in the ocean—preliminary results of a Lagrangian ensemble model. Journal of Plankton Research 4, 735756.CrossRefGoogle Scholar
Zeitzschel, B. 1978. Oceanographic factors influencing the distribution of plankton in space and time. Micropaleontology 24, 139159.CrossRefGoogle Scholar