Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:28:57.695Z Has data issue: false hasContentIssue false

Control of ethylene synthesis and ripening by sense and antisense genes in transgenic plants

Published online by Cambridge University Press:  05 December 2011

Don Grierson
Affiliation:
AFRC Research Group in Plant Gene Regulation, Department of Physiology and Environmental Science, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, LE12 5RD, U.K.
Get access

Synopsis

Ripening of tomato and other fruits involves changes in quality attributes that make them attractive to consumers. These alterations are brought about by the coordinated expression of specific genes. Ethylene, synthesised by cells of climacteric fruit at the onset of ripening, stimulates the expression of genes required for ripening to occur. Experiments with transgenic plants have shown that a 5′ flanking region from the fruit polygalacturonase (PG) gene directs the ripening-specific expression of foreign genes in tomato. Antisense genes have also been used to down-regulate expression of the PG gene, causing a reduction in pectin degradation during ripening. This reduction in PG has beneficial effects on fruit storage life and processing characteristics. Antisense technology has also been used to assign functions to previously unknown genes. This has led to the identification of the gene for ethylene forming enzyme (EFE) which catalyses the terminal step in ethylene synthesis. Detached fruit from tomato plants in which EFE is inhibited by antisense genes produce much less ethylene and ripening is greatly slowed. The rate of ripening can be restored by adding ethylene externally. These results raise the possibility of manipulating ripening of many fruits and also of controlling processes such as abscission and senescence of leaves and flowers.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, F. B. 1973. Ethylene in plant biology. New York: Academic Press.Google Scholar
Ali, M. Z. & Brady, C. J. 1982. Purification and characterisation of the polygalacturonase of tomato fruit. Australian Journal of Plant Physiology 9, 155–69.Google Scholar
Armstrong, G. A., Alberti, M. & Hearst, J. E. 1990. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic Prokaryotes. Proceedings of the National Academy of Sciences (USA) 87, 9975.CrossRefGoogle ScholarPubMed
Bennett, A. B. & Osteryoung, K. W. 1991. Protein transport and targeting within the endomembrane system of plants. In Plant genetic engineering, pp. 199237, ed. Grierson, D., Glasgow: Blackie and Son.Google Scholar
Bird, C. R., Smith, C. J. S., Ray, J. A., Moureau, P., Bevan, M. W., Bird, A. S., Hughes, S., Morris, P. C., Grierson, D. & Schuch, W. 1988. The tomato polygalacturonase gene and ripening specific expression in transgenic plants. Plant Molecular Biology 11, 651–62.CrossRefGoogle ScholarPubMed
Bird, C. R., Ray, J. A., Fletcher, J. D., Boniwell, J. M., Bird, A., Teulieres, C., Blain, I., Bramley, P. M. & Schuch, W. 1991. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Bio-technology 9, 635–39.Google Scholar
Davies, K. M., & Grierson, D. 1989. Identification of cDNA clones for tomato (Lycopersicon esculentum) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta 179, 7380.CrossRefGoogle ScholarPubMed
Davies, K. M., Hobson, G. E. & Grierson, D. 1988. Silver ions inhibit the ethylene-stimulated production of ripening-related mRNAs in tomato. Plant, Cell & Environment 11, 729–38.CrossRefGoogle Scholar
Hobson, G. E. & Grierson, D. 1990. Differential effect of silver ions on the accumulation of ripening related mRNAs in tomato. Journal of Plant Physiology 135, 708–13.Google Scholar
DellaPenna, D., Alexander, D. C. & Bennett, A. B. 1986. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase levels during ripening. Proceedings of the National Academy of Sciences (USA), 83, 6420.CrossRefGoogle ScholarPubMed
Giovannoni, J. J., DellaPenna, D., Bennett, A. B. & Fischer, R. J. 1989. Expression of a Chimaeric polygalacturonase gene in transgenic rin (ripening-inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. The Plant Cell 1, 53.Google Scholar
Grierson, D. 1991. Plant Biotechnology Vol. 1., Plant genetic engineering. Glasgow: Blackie and Son.Google Scholar
Grierson, D., Maunders, M. J., Slater, A., Ray, J., Bird, C. R., Schuch, W., Holdsworth, M. J., Tucker, G. A. & Knapp, J. E. 1986a. Gene expression during tomato ripening. Philosophical Transactions of the Royal Society B 314, 399410.Google Scholar
Grierson, D., Tucker, G. A., Keen, J., Ray, J., Bird, C. R. & Schuch, W. 1986b. Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucleic Acids Research 14, 8595–603.CrossRefGoogle ScholarPubMed
Grierson, D., Fray, R. G., Hamilton, A. J., Smith, C. J. S. & Watson, C. F. (1991). Does co-suppression of sense genes in transgenic plants involve antisense RNA? Trends in Biotechnology 9, 122–3.CrossRefGoogle Scholar
Hamilton, A. J., Lycett, G. W. & Grierson, D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene intransgenic plants. Nature 346, 284–7.CrossRefGoogle Scholar
Hamilton, A. J., Bouzayen, M. & Grierson, D. 1991. Identification of a tomato gene for the ethylene forming enzyme by expression in yeast. Proceedings of the National Academy of Sciences (USA) 88, 7434–7.CrossRefGoogle ScholarPubMed
Holdsworth, M. J., Bird, C. R., Ray, J., Schuch, W. & Grierson, D. 1987a. Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Research 15, 731–9.CrossRefGoogle ScholarPubMed
Holdsworth, M. J., Schuch, W. & Grierson, D. 1987b. Nucleotide sequence of an ethylene-related gene from tomato. Nucleic Acids Research 15, 10600.CrossRefGoogle ScholarPubMed
Holdsworth, M. J., Schuch, W. & Grierson, D. 1988. Organisation and expression of a wound/ripening related small multigene family from tomato. Plant Molecular Biology 11, 81–8.CrossRefGoogle ScholarPubMed
Jorgensen, R. 1990, Altered gene expression in plants due to trans interactions between homologous genes. Trends in Biotechnology 8, 340–4.CrossRefGoogle ScholarPubMed
Knapp, J., Moureay, P., Schuch, W. & Grierson, D. 1989. Organisation and expression of polygalacturonase and other ripening related genes in Ailsa Craig, Neverripe and Ripening Inhibitor tomato mutants. Plant Molecular Biology 12, 105–16.CrossRefGoogle Scholar
Lincoln, J. E., Cordes, S., Read, E. & Fischer, R. L. 1987. Regulation of gene expression by ethylene during tomato fruit development. Proceedings of the National Academy of Sciences (USA) 84, 2793.CrossRefGoogle ScholarPubMed
Maunders, M. J., Holdsworth, M. J., Slater, A., Kapp, J. E., Bird, C. R., Schuch, W. & Grierson, D. 1987. Ethylene stimulates the accumulation of ripening-related mRNAs in tomato. Plant, Cell & Environment 10 177–86.Google Scholar
Nakijima, N., Mori, H., Yamazaki, K. & Imaseki, H. 1990. Molecular cloning and sequence of a complementary cDNA encoding 1-aminocyclopropane-l-carboxyl synthase induced by tissue wounding. Plant Cell Physiology 31, 1021–9.Google Scholar
Osteryoung, K. W., Toenjes, K., Hall, B., Winkler, V. & Bennett, A. B. 1990. Analysis of tomato polygalacturonase expression in transgenic tobacco. The Plant Cell 2, 1239–48.Google ScholarPubMed
Picton, S. & Grierson, D. 1988. Inhibition of expression of tomato-ripening genes at high temperature. Plant, Cell & Environment 11 265–72.CrossRefGoogle Scholar
Ray, J., Bird, C., Maunders, M. J., Grierson, D. & Schuch, W. 1987. Sequence of a ripening related cDNA from tomato. Nucleic Acids Research 15, 10587.CrossRefGoogle ScholarPubMed
Ray, J., Knapp, J., Grierson, D., Bird, C. & Schuch, W. 1988. Identification and sequence determination of a cDNA clone for tomato pectin esterase. European Journal of Biochemistry 174, 119–24.CrossRefGoogle ScholarPubMed
Schuch, W. S., Kanczler, J., Robertson, D., Hobson, G., Tucker, G., Grierson, D., Bright, S. & Bird, C. R. 1991. Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. HortScience 26, 1517–20.CrossRefGoogle Scholar
Sato, T. & Theologis, A., 1989. Cloning the mRNA encoding 1-aminocyclopropane-l-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proceedings of the National Academy of Sciences (USA) 86, 6621–5.CrossRefGoogle Scholar
Slater, A., Maunders, M. J., Edwards, D., Schuch, W. & Grierson, D. 1985. Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Molecular Biology 5, 137–47.CrossRefGoogle ScholarPubMed
Sheehy, R. E., Pearson, J., Brady, C. J. & Hiatt, W. R. 1987. Molecular characterisation of tomato fruit polygalacturonase. Molecular and General Genetics 208, 30.CrossRefGoogle Scholar
Sheehy, R. E., Kramer, M. & Hiatt, W. R. 1988. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proceedings of National Academy of Sciences (USA) 85, 8805.CrossRefGoogle ScholarPubMed
Smith, C. J. S., Slater, A. & Grierson, D. 1986. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 35,000. Planta 168, 94100.CrossRefGoogle Scholar
Smith, C. J. S., Watson, C., Ray, J., Bird, C. R., Morris, P. C., Schuch, W. & Grierson, D. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334, 724–26.CrossRefGoogle Scholar
Smith, C. J. S., Watson, C. F., Morris, P. C., Bird, C. R., Seymour, G. B., Gray, J. E., Arnold, C., Tucker, G. A., Schuch, W. & Grierson, D. 1990a. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Molecular Biology 14, 369–79.CrossRefGoogle ScholarPubMed
Smith, C. J. S., Watson, C. F., Bird, C. R., Ray, J., Schuch, W. & Grierson, D. 1990b. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Molecular and General Genetics 224, 477–81.CrossRefGoogle ScholarPubMed
Tucker, G. A. & Grierson, D. 1982. Synthesis of polygalacturonase during tomato fruit ripening. Planta 155, 64–7.CrossRefGoogle ScholarPubMed
Tucker, G. A. & Grierson, D. 1987. Fruit ripening. In Biochemistry of plants: a comprehensive treatise. Vol. 12., pp. 265318, Davies D. D., London: Academic Press.Google Scholar
Tucker, G. A., Robertson, N. G. & Grierson, D. 1980. Changes in polygalacturonase isoenzymes during the ripening of normal and mutant tomato fruit. European Journal of Biochemistry, 112, 119–24.CrossRefGoogle ScholarPubMed
Tucker, G. A., Robertson, N. G. & Grierson, D. 1981. The conversion of tomato fruit polygalacturonase isoenzyme 2 into isoenzyme 1 in vitro. European Journal of Biochemistry 115, 8790.CrossRefGoogle ScholarPubMed
Van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, G. M., Mol, J. M. N. & Stuitje, A. R. 1988. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333, 866–9.CrossRefGoogle Scholar
van der Straeten, D., Van Wiemeersch, L., Goodrian, H. M. & van Montagu, M. 1990. Proceedings of the National Academy of Sciences (USA) 87, 4859–63.CrossRefGoogle Scholar