Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T02:53:10.823Z Has data issue: false hasContentIssue false

38.—Development of Ideas concerning the Carbon Dioxide System in Sea Water up to 1940.

Published online by Cambridge University Press:  05 December 2011

John Lyman
Affiliation:
Department of Geosciences, North Carolina State University, and Department of Environmental Sciences and Engineering, University of North Carolina
Get access

Synopsis

Marcet reported in 1822 that sea salt contained lime, and several investigators confirmed its presence in sea water in the 1830s. Darondeau found dissolved CO2 in sea water in 1838, and von Bibra in 1851 considered sea water to be slightly alkaline. Tornöe in 1880 pointed out that this condition required part of the CO2 to be bound chemically, and Hamberg applied the mass action law to the CO2-system in sea water in 1885. For nearly 50 years, however, despite the development of the concepts of pH and activity, attempts to apply the law in detail failed, first because the behaviour of H2CO3 and HCO3 as weak acids is strikingly different in pure water, sea water or NaCl solutions, and secondly because the presence and role of another weak acid, boric acid, was not recognised fully until 1933. Investigators often attributed their failures to some mysterious ability of the sea to disregard or evade the laws of physical chemistry. Buch in 1933 and 1938 finally laid this hobgoblin to rest, and his results are still accepted with only minor modifications.

Type
Physics and Chemistry
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

BIBRA, E. V., 1851. Untersuchung von Seewasser des stillen Meeres und des atlantischen Oceans. Justus Liebigs Annln Chem., 77, 90102.CrossRefGoogle Scholar
Buch, K., 1917. Über die Alkalinität, Wasserstoffionenkonzentration, Kohlensäure und Kohlensäuretension im Wasser der Finnland umgebenden Meere. Finnl. Hydrogr.-Biol. Unters., 14, 132 pp.Google Scholar
Buch, K., 1930. Die Kohlensäurefaktoren des Meerwassers. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer, 67, 5188.Google Scholar
Buch, K., 1933 a. Boric acid in sea water and its effect on the carbon dioxide equilibrium. Nature, Lond., 131, 688.CrossRefGoogle Scholar
Buch, K., 1933 b. Om borsyran in havet och dess inverkan pa kolsyrejämviktssystem. Meddn Finska KemSamf., 42, 1431.Google Scholar
Buch, K., 1933 c. On boric acid in the sea and its influence on the carbonic acid equilibrium. J. Cons. Perm. Int. Explor. Mer, 8, 309325.CrossRefGoogle Scholar
Buch, K., 1933 d. Der Borsäuregehalt des Meerswassers und seine Bedeutung bei der Berechnung des Kohlensäuresystems im Meerwasser. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer, 85, 7175.Google Scholar
Buch, K., 1938. New determinations of the second dissociation constant of carbonic acid in sea water. Acta Acad. Abo. (Math. Phys.), 11 (5), 18 pp.Google Scholar
Buch, K., 1945. Kolsyrejämvikten i Baltiska havet, Fennia, 68 (5), 208 pp.Google Scholar
Buch, K., 1951. Das Kohlensäure Gleichgewichtssystem im Meerwasser; kritische Durchsicht und Neuberechnungen der Konstituenten. HavsforskInst. Skr., Helsingf., 151.Google Scholar
Buch, K., Harvey, H. W., Wattenberg, H. and Grtpenberg, S., 1932. Über das Kohlensäuresystem in Meerwasser. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer, 79, 170.Google Scholar
Buchanan, J. Y., 1874. On the absorption of carbonic acid by saline solutions. Proc. Roy. Soc., 22, 192196, 483–95.Google Scholar
Darondeau, M., 1838. Résultat de l'examinen des eaux de mer recueillies pendant le voyage de la Bonite, avec l'appareil imaginé par M. Biot. Annls Chim. Phys., 69, 100106.Google Scholar
Dittmar, W., 1884. Report on researches into the composition of ocean-water collected by H.M.S. Challenger during the years 1873–76. Rep. Scient. Res. Voy. H.M.S. Challenger, Phys. Chem., 1(01), 247 pp., 3 pl.Google Scholar
Faurholt, J., 1924. Etudes sur les solutions aqueuses d'anhydride carbonique et d'acide carbonique. J. Chem. Phys., 21, 400455.Google Scholar
Foote, F. J., 1932. Determination of boron in waters. Ind. Engng Chem. Analyt. Edn, 4, 3942.CrossRefGoogle Scholar
Fox, C. J. J., 1909. On the coefficients of adsorption of the atmospheric gases in distilled water and sea water. Publs Circonst. Cons. Perm. Int. Explor. Mer, 44, 31 pp.Google Scholar
Garrels, R. M. and Dreyer, R. M., 1952. Mechanism of limestone replacement at low temperatures and pressures. Bull. Geol. Soc. Am., 63, 325379.CrossRefGoogle Scholar
PROC. R.S.E. (B) Vol. 72. 1972. 25CrossRefGoogle Scholar
Gee, H.et al., 1932. Calcium equilibrium in sea water. Bull. Scripps Instn Oceanogr. Tech. Ser., 3, 145190.Google Scholar
Glebovich, T. A., 1946. Bor v more. TrudῩ Biogeokhim. Lab., 8, 225252.Google Scholar
Göbel, F., 1838. Reise in die Steppen des sudlichen Russlands, 2, 107. Dorpat: Kluge.Google Scholar
Goldschmidt, V. M. and Peters, C. L., 1932. Zur Geochemie des Bors, II. Nachr. Ges. Wiss. Göttingen (Math.-phys. Kl.) 3, 528545.Google Scholar
Greenberg, D. M. and Moberg, E. G., 1932. The relation of the buffer mechanism of sea water to the solubility of calcium carbonate. Bull. Natn. Res. Court. Wash., 89, pp. 7374.Google Scholar
Guignet, E. and Telles, A., 1876. Composition chimique des eaux de la baie de Rio-de-Janeiro. C. R. Hebd. Séanc. Acad. Sci., Paris, 83, 919921.Google Scholar
Haas, A. R., 1916. The effect of the addition of alkali to sea water upon the hydrogen ion concentration. J. Biol. Chem., 26, 515517.CrossRefGoogle Scholar
Hamberg, A., 1885. Hydrografisk-kemiska iakttagelser under den Svenska Expeditionen till Grönland 1883, II. Bih. K. Svenska VetenskAkad. Handl., 10 (13), 57 pp., 4 pl.Google Scholar
Harding, M. W. and Moberg, E. G., 1933. The determination and quantity of boron in sea water. Proc. 5th Pacif. Sci. Congr., 3, 20932095.Google Scholar
Harned, H. S. and Bonner, F. T., 1945. The first ionization of H2CO3 in aqueous solutions of NaCl. J. Am. Chem. Soc., 67, 10261031.CrossRefGoogle Scholar
Helland-Hansen, B., Jacobsen, J. P. and Thompson, T. G., 1948. Chemical methods and units. Publs Scient. Ass. Océanogr. Phys., 9, 28 pp.Google Scholar
Henderson, L. J. and Cohn, E. J., 1916. The equilibrium between acids and bases in sea water. Proc. Natn. Acad. Sci. U.S.A., 2, 618622.CrossRefGoogle ScholarPubMed
Hindman, J. C., 1942. Calcium Equilibria in Sea Water, M.A. Thesis, U.C.L.A., 71 numb, leaves.Google Scholar
Hindman, J. C., 1943. Properties of the System CaCO3-CO2-H2O in Sea Water and Sodium Chloride Solutions, Ph. D. Thesis, U.C.L.A., 60 numb, leaves.Google Scholar
Igelsrud, I., Thompson, T. G. and Zwicker, B. M. G., 1938. The boron content of sea water and of marine organisms. Am. J. Sci., 35, 4763.CrossRefGoogle Scholar
Irving, L., 1925. The carbonic acid-carbonate equilibrium and other weak acids in sea water. J. Biol. Chem. 63, 767778.CrossRefGoogle Scholar
Irving, L., 1926. The precipitation of calcium and magnesium from sea water. J. Mar. Biol. Ass. U.K., 14, 441445.CrossRefGoogle Scholar
Irving, L., 1934. Acid-base equilibrium in sea water. Science, N.Y., 80, 587588.CrossRefGoogle ScholarPubMed
Jacobsen, O., 1873. Ueber die Luft des Meerwassers. Justus Liebigs Annln Chem., 167, 138.CrossRefGoogle Scholar
Johnston, J., 1916. The determination of carbonic acid, combined and free, in solution, particularly in natural waters. J. Am. Chem. Soc, 38, 947975.CrossRefGoogle Scholar
Kändler, R., 1930. Untersuchungen über die Beziehungen zwischen Wasserstoffionen-Konzentration, freier Kohlensäure und Alkalinität im Meerwasser. Int. Revue Ges. Hydrobiol. Hydrogr., 24, 177224.CrossRefGoogle Scholar
Kapp, E. M., 1928. The precipitation of calcium and magnesium from sea water by sodium hydroxide. Biol. Bull. Mar. Biol. Lab., Woods Hole, 55, 453458.CrossRefGoogle Scholar
Konopik, N. and Leberl, O., 1949. Kolorometrische pH-Bestimmung im Bereich 10 bis 15. II Mitt., Dissoziationskonstanten sehr schwacher Säuren. Mh. Chem., 80, 655669.Google Scholar
Kreps, E. M., 1926. Über das geseitige Verhältnis von CO2 and pH im Meerwasser bei verschiedenem Salzgehalt. Int. Revue Ges. Hydrobiol. Hydrogr., 15, 240257.CrossRefGoogle Scholar
Krogh, A., 1904. On the tension of carbonic acid in natural waters and especially in the sea. Meddr Grønland, 26, 331405.Google Scholar
Laurens, G., 1835. Analyse de l'eau de la partie de la Méditerranée qui baigne les côtes de Marseille. J. Pharm., 21, 9092.Google Scholar
Loeb, J., 1903. Ueber die Reaction des Seewassers und die Rolle der Hydroxylionen bei der Befruchtung der Seeigeleier. Pflügers Arch. Ges. Physiol., 99, 637638.CrossRefGoogle Scholar
Loeb, J., 1904. Ueber den Einfluss der Hydroxyl-und Wasserstoffionen auf die Regeneration und des Wachsthum der Tubularien. Pflügers Arch. Ges. Physiol., 101, 340348.CrossRefGoogle Scholar
Loeb, J., 1907. Zur Analyse der osmotischen Entwicklungserregung unbefruchteter Seeigeleier. Pflügers Arch. Ges. Physiol., 118, 181204.CrossRefGoogle Scholar
McClendon, J. F., 1916. The composition, especially the hydrogen ion concentration of sea water in relation to marine organisms. J. Biol Chem., 28, 135152.CrossRefGoogle Scholar
McClendon, J. F., 1917. The standardization of a new color method for the determination of the hydrogen ion concentration, CO2 tension, and CO2 and O2 content of sea water, of animal heat, and of CO2 of the air, with a summary of similar data on bicarbonate solutions. J. Biol. Chem., 30, 265288.CrossRefGoogle Scholar
McClendon, J. F., Gault, G. C. and Mulholland, S., 1917. The hydrogen-ion concentration, CO2 tension, and CO2 content of sea-water. Publs Carnegie Instn, 251, 2169.Google Scholar
Manov, G. G., de Lollis, N. J. and Acree, S. F., 1944. Ionization constant of boric acid and the pH of certain borax-chloride buffer solutions from 0° to 60°. J. Res. Natn. Bur. Stand., 33, 287306.CrossRefGoogle Scholar
Manov, G. G., de Loixis, N. J., Lindvall, Phoebe W. and Acree, S. F., 1946. Effect of sodium chloride on the apparent ionization constant of boric acid and the pH values of borate solutions. J. Res. Natn. Bur. Stand., 36, 543558.CrossRefGoogle Scholar
Marcet, A., 1819. On the specific gravity, and temperature of Sea Waters, in different parts of the Ocean, and in particular seas; with some account of their saline contents. Phil. Tram. Roy. Soc., 109, 161208.Google Scholar
Marcet, A., 1822. Some experiments and researches on the saline contents of sea-water, undertaken with a view to correct and improve its chemical analysis. Phil. Trans. Roy. Soc., 112, 448456.Google Scholar
Maury, M. F., 1855. Physical Geography of the Seas. New York: Harper.Google Scholar
Moberg, E. G. and Harding, M. W., 1933. The boron content of sea water. Science, N.Y., 77, 510.CrossRefGoogle ScholarPubMed
Moberg, E. G., Greenberg, D. M., Revelle, R. and Allen, E. C, 1934. The buffer mechanism of sea water. Bull. Scripps Instn Oceangr. Tech. Ser., 3, 231278.Google Scholar
Näsänen, R., 1946. Die Zweite Dissoziationskonstante der Kohlensäure in NaCl-und KCl-Lösungen. Acta Chem. Fenn., 19 B, 9093.Google Scholar
Näsänen, R., 1947. Potentiometric study on the first ionization of carbonic acid in aqueous solutions of sodium chloride. Acta Chem. Scand., 1, 204209.CrossRefGoogle Scholar
Owen, B. B. and King, E. J., 1943. The effect of sodium chloride upon the ionization of boric acid at various temperatures. J. Am. Chem. Soc, 65, 16121620.CrossRefGoogle Scholar
Palitsch, S., 1923. VII. Alkalinity and hydrogen ion concentration, In Helland-Hansen, B., The Ocean Waters; an Introduction to Physical Oceanography (II). Int. Revue Ges. Hydrobiol. Hydrogr., 11, 398437.Google Scholar
Pettersson, O., 1894. A review of Swedish hydrographic research in the Baltic and the North Sea. Scott. Geogr. Mag., 10, 281302.Google Scholar
Rakestraw, N. W., 1949. The conception of alkalinity or excess base of sea water. J. Mar. Res., 8, 1420.Google Scholar
Rakestraw, N. W. and Mahncke, H. E., 1935. Boron content of sea water of the North Atlantic Coast. Ind. Engng Chem. Analyt. Edn, 7, 425.CrossRefGoogle Scholar
Revelle, R., 1934. Physico-chemical factors affecting the solubility of calcium carbonate in sea water. J. Sedim. Petrol, 4, 103110.Google Scholar
Revelle, R. and Fleming, R. H., 1933. The solubility product constant of calcium carbonate in sea water. Proc. 5th Pacif. Sci. Congr., 3, 20892092.Google Scholar
Revelle, R. and Moberg, E. G., 1933. The probable role of boron in the buffer mechanism of sea water. Proc. 5th Pacif. Sci. Congr., 3, 21472151.Google Scholar
Ringer, W. E., 1908. Die Alkalinität des Meerwassers. Verh. Rijksinst. Onderz. Zee, 2(3), 122.Google Scholar
Ruppin, E., 1909. Die Alkalinität des Meerwassers. Wiss. Meeresunters. (Abt. Kiel), 11, 277302.Google Scholar
Saunders, J. T., 1926. The hydrogen-ion concentration of natural waters. I. The relationship of pH to the pressure of carbon dioxide. Br. J. Exp. Biol., 4, 4572.Google Scholar
Schulz, B., 1921. Methoden und Ergebnisse der Untersuchung des Kohlensäuregehalts im Meerwasser. Annln Hydrogr. Berl., 49, 273293.Google Scholar
Schulz, B., 1930. Die Alkalinität des Oberflächender Nordsee und des Nordatlantik. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer, 67, 9192.Google Scholar
Schweitzer, G., 1839. Analysis of sea-water as it exists in the English Channel near Brighton. Lond. Edinb. Dublin Phil. Mag., 15, 5160.CrossRefGoogle Scholar
Scofield, C. S. and Wilcox, L. V., 1931. Boron in irrigation waters. Tech. Bull. U.S. Dep. Agric., 264, 65 pp.Google Scholar
Skirrow, G., 1965. The dissolved gases-carbon dioxide. In J. P.Riley and G. Skirrow, Chemical Oceanography, pp. 227322. London and N.Y.Google Scholar
Thompson, T. G. and Bonnar, R. N., 1931. The buffer capacity of sea water. Ind. Engng Chem. Analyt. Edn, 3, 393395.CrossRefGoogle Scholar
Thompson, T. G., Miller, R. C, Hitchings, G. H. and Todd, S. P., 1929. Studies of the sea water near the Puget Sound Biological Station during the summer of 1927. Publs Puget Sound Mar. Biol. Stn, 7, 6599.Google Scholar
Thompson, T. G. and Moberg, E. G., 1932. Some problems of oceanographic chemistry. Scient. Mon., N.Y., 34, 442445.Google Scholar
Tornoe, H., 1880. On the carbonic acid in sea water. Norw. North-Atl. Exped. 1876–78, 1, Chemistry, 24–44. [Parallel texts in English and in Norwegian. The Norse text should be followed in tracing Tornöe's ideas on the carbonate-bicarbonate equilibrium, for, as pointed out by Palitsch (1923), the English translation does not do justice to the original text.]Google Scholar
Wattenberg, H., 1933. Kalziumkarbonat und Kohlensäuregehalt des Meerwassers. Wiss. Ergebn. Dt. Atlant. Exped. ‘Meteor’, 8, 333 pp.Google Scholar
Wattenberg, H., 1936. Kohlensäure und Kalziumkarbonat im Meere. Fortschr. Miner. Kristollagr. Petrogr., 20, 168195.Google Scholar