No CrossRef data available.
Article contents
XXII.—A Priori Estimates and Nonlinear Parabolic Equations of Arbitrary Order
Published online by Cambridge University Press: 14 February 2012
Synopsis
In this paper it is shown that the question of the existence of a classical solution of the first initial-boundary value problem for a non-linear parabolic equation may be reduced to the problem of the derivation of suitable a priori bounds.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 69 , Issue 4 , 1972 , pp. 287 - 293
- Copyright
- Copyright © Royal Society of Edinburgh 1972
References
References to Literature
[1]Agmon, S., Douglis, A. and Nirenberg, L., 1959. ‘Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, I’, Communs Pure Appi. Math., 12, 623–722.Google Scholar
[2]Browder, F. E., 1966. ‘Topological methods for non-Linear elliptic equations of arbitrary order’, Pacif. J. Math., 17, 17–31.CrossRefGoogle Scholar
[3]Edmunds, D. E. and Peletier, L. A., 1971. ‘Quasilinear parabolic equations’, Annali Scu. Norm. Sup. Pisa, 25, 397–421.Google Scholar
[4]Ladyzhenskaya, O. A. and Ural'tseva, N. N., 1968. Linear and quasilinear elliptic equations. New York: Academic Press.Google Scholar
[5]Ladyzhenskaya, O. A., Ural'tseva, N. N. and Solonnikov, V. A., 1968. ‘Linear and quasi-linear equations of parabolic type’, Am. Math. Soc. Transi., 23.Google Scholar
[6]Leray, J. and Schauder, J., 1934. ‘Topologie et équations fonctionelles’, Annls Scient. Éc. Norm. Sup., Paris, 51, 45–78.CrossRefGoogle Scholar
[7]Levy, P., 1920. ‘Sur les fonctions lignes implicites’, Bull. Soc. Math. Fr., 48, 13–27.CrossRefGoogle Scholar
[8]Serrín, J., 1969. ‘The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables’, Phil. Trans. Roy. Soc, A264, 413–496.Google Scholar
[9]Solonnikov, V. A., 1965. ‘On boundary value problems for linear parabolic systems of differential equations of general form’, Trudy Mat. Inst. V. A. Steklov, 83.Google Scholar