Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T01:59:41.087Z Has data issue: false hasContentIssue false

XXI.—A Mathematical Model of a Retinal Rod*

Published online by Cambridge University Press:  14 February 2012

Anne Duxbury
Affiliation:
Department of Mathematics, University of Dundee.

Synopsis

A study is undertaken of the field excited in a semi-infinite cylindrical dielectric rod having small conductivity when plane harmonic electromagnetic waves are incident obliquely upon its end. All back-scattering and the complicated edge effects due to the end of the rod are neglected. Expressions for the normalized power absorbed in the rod are obtained by an approximation technique from the corresponding results for a similar rod whose conductivity is zero, assuming that the radiation through the walls of the rod may be ignored. Selected numerical results are presented and the relevance of these to models of a retinal rod of the human eye is discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Barer, R., 1957. J. Opt. Soc. Am., 47, 545556.Google Scholar
Bierson, G. and Kinsley, D. J., 1965. IEEE Trans. Microwave Theory Techqs., MTT-13, 345356.Google Scholar
Dartnall, H. J. A., 1953. Br. Med. Bull., 9, 2430.CrossRefGoogle Scholar
Dartnall, H. J. A. and Goodeve, C. F., 1937. Nature, Lond., 139, 409411.Google Scholar
De Valois, R. L. and Abramov, I., 1966. A. Rev. Psychol., 17, 337362.Google Scholar
Duxbury, A., 1969. Q. Jl Mech. Appl. Math., 22, 389404Google Scholar
Elsasser, W. M., 1949. J. Appl. Phys., 20, 11931196.Google Scholar
Enoch, J. M., 1961. J. Opt. Soc. Am., 51, 11221126.CrossRefGoogle Scholar
Enoch, J. M., 1963. J. Opt. Soc. Am., 53, 7185.Google Scholar
Enoch, J. M., 1967. J. Opt. Soc. Am., 57, 548549.Google Scholar
Flamant, F. and Stiles, W. S., 1948. J. Physiol., Lond., 107, 187202.Google Scholar
Goubau, G., 1952. Proc. Inst Radio Engr., 40, 865868.Google Scholar
Jones, D. S., 1964. The Theory of Electromagnetism. Oxford: Pergamon Press.Google Scholar
Rushton, W. A. H., 1956. J. Physiol., Lond., 134, 1129.CrossRefGoogle Scholar
Sidman, R., 1957. J. Biophys. Biochem. Cytol., 3, 1530.Google Scholar
Snitzer, E., 1961. J. Opt. Soc. Am., 51, 491498.Google Scholar
Snyder, A. W., 1966 a. J. Opt. Soc. Am., 56, 601606.CrossRefGoogle Scholar
Snyder, A. W., 1966 b. J. Opt. Soc. Am., 56, 705706.CrossRefGoogle Scholar
Stiles, W. S., 1962. Ann. Roy. Coll. Surg., 30, 73101.Google Scholar
Stiles, W. S. and Crawford, B. H., 1933. Proc. Roy. Soc., B 112, 428450.Google Scholar
Stratton, J. A., 1941. Electromagnetic Theory. New York: McGraw-Hill.Google Scholar
Toraldo Di Francia, G., 1948. Nuovo Cim., 5, 589590.CrossRefGoogle Scholar
Toraldo Di Francia, G., 1949. J. Opt. Soc. Am., 39, 324.CrossRefGoogle Scholar
Toraldo Di Francia, G., 1949. Proc. Phys. Soc. Lond., B 62, 461462.Google Scholar
Vos, J. J., 1960. Fortschr. Augenheilk., 10, 3248.Google Scholar
Wyszecki, G. and Stiles, W. S., 1967. Color Science. New York: Wiley.Google Scholar