Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T04:51:48.527Z Has data issue: false hasContentIssue false

XII.—Clebsch-Aronhold Symbols and the Theory of Symmetric Functions*

Published online by Cambridge University Press:  14 February 2012

H. W. Turnbull
Affiliation:
The University, St Andrews.
A. H. Wallace
Affiliation:
The University, St Andrews.

Synopsis

A square matrix A = (aij) is expressed symbolically in terms of Clebsch-Aronhold equivalent symbols aij = aiaj = βibj = …, and the symbolic expressions for symmetric functions of the latent roots of A are considered, the relation between these functions and projective invariants of the bilinear form uAx being noted. The Newton and Brioschi relations between the symmetric functions are obtained by reduction of symbolic determinants and permanents respectively, and the Wronskian relations are shown to be equivalent to certain identities between determinants and permanents due to Muir. Also the fundamental theorem of symmetric functions is obtained symbolically as a consequence of the first fundamental theorem of invariants. The paper concludes with a note on the symbolization of the h-bialternants, that is of the traces of irreducible invariant matrices of A.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES TO LITERATURE

Aronhold, , 1858. “Theorie der homogenen Funktionen dritten Grades von drei Veränderlichen”, Journ. für Math., LV, 97191.Google Scholar
Clebsch, , 1861 a. “Über eine Transformation der homogenen Funktionen dritter Ordnung mit vier Veränderlichen”, Journ. für Math., LVIII, 109126.Google Scholar
Clebsch, , 1861 b. “Über symbolische Darstellung algebraischer Formen”, Journ. für Math., LIX, 162.Google Scholar
Elliott, , 1913. Algebra of Quantics, Oxford.Google Scholar
Hammond, , 1882. “On the Calculating of Symmetric Functions”, Proc. London Math. Soc., ser. 1, XIII, 79.Google Scholar
Littlewood, , 1940. The Theory of Group Characters, Oxford.Google Scholar
MacMahon, , 1915. Combinatory Analysis, Cambridge.Google Scholar
MacMahon, , 1924. “Researches in the Theory of Determinants”, Trans. Cambridge Phil. Soc., XXIII, 89135.Google Scholar
MacMahon, , 1927. “The Structure of a Determinant”, Journ. London Math. Soc., 11, 273286.CrossRefGoogle Scholar
Muir, , 1897. “A Relation between Permanents and Determinants”, Proc. Roy. Soc. Edin., XXII, 134136.Google Scholar
Rutherford, , 1948. Substitutional Analysis, Edinburgh.Google Scholar
Sylvester, , 1851. “On the Relation between the Minor Determinants of Linearly Equivalent Quadratic Functions”, Phil. Mag., ser. 4, 1, 295–305, 415; Coll. Math. Papers, 1, 241–250, 251.CrossRefGoogle Scholar
Sylvester, , 1852. “On the Principles of the Calculus of Forms“, Cambridge and Dublin Math. Journ., VII, 5297; Coll. Math. Papers, 1, 284–327.Google Scholar
Turnbull, , 1932. “The Invariant Theory of a General Bilinear Form”, Proc. London Math. Soc., ser. 2, XXXIII, 119.CrossRefGoogle Scholar
Turnbull, , 1945. The Theory of Determinants, Matrices and Lnvariants (2nd Ed.), London and Glasgow.Google Scholar
Young, , 1929. “On Quantitative Substitutional Analysis” (Fourth Memoir), Proc. London Math. Soc., ser. 2, xxxi, 253288.Google Scholar