Published online by Cambridge University Press: 21 September 2021
When a liquid fills the semi-infinite space between two concentric cylinders which rotate at different steady speeds, how about the shape of the free surface on top of the fluid? The different fluids will lead to a different shape. For the Newtonian fluid, the meniscus descends due to the centrifugal forces. However, for the certain non-Newtonian fluid, the meniscus climbs the internal cylinder. We want to explain the above phenomenon by a rigorous mathematical analysis theory. In the present paper, as the first step, we focus on the Newtonian fluid. This is a steady free boundary problem. We aim to establish the well-posedness of this problem. Furthermore, we prove the convergence of the formal perturbation series obtained by Joseph and Fosdick in Arch. Ration. Mech. Anal. 49 (1973), 321–380.