Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T20:58:01.521Z Has data issue: false hasContentIssue false

Wave propagation for a class of non-local dispersal non-cooperative systems

Published online by Cambridge University Press:  14 March 2019

Fei-Ying Yang
Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu730000, China ([email protected])
Wan-Tong Li
Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu730000, China ([email protected])
Jia-Bing Wang
Affiliation:
School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan430074, China

Abstract

This paper is concerned with the travelling waves for a class of non-local dispersal non-cooperative system, which can model the prey-predator and disease-transmission mechanism. By the Schauder's fixed-point theorem, we first establish the existence of travelling waves connecting the semi-trivial equilibrium to non-trivial leftover concentrations, whose bounds are deduced from a precise analysis. Further, we characterize the minimal wave speed of travelling waves and obtain the non-existence of travelling waves with slow speed. Finally, we apply the general results to an epidemic model with bilinear incidence for its propagation dynamics.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D. and Toledo-Melero, J.. Nonlocal diffusion problems, mathematical surveys and monographs Providence, Rhode Island: AMS, 2010).CrossRefGoogle Scholar
2Bao, X., Li, W. T. and Shen, W.. Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats. J. Differ. Equ. 260 (2016), 85908637.CrossRefGoogle Scholar
3Bates, P., Fife, P., Ren, X. and Wang, X.. Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138 (1997), 105136.CrossRefGoogle Scholar
4Berestycki, H., Nicolaenko, B. and Scheurer, B.. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16 (1985), 12071242.CrossRefGoogle Scholar
5Berestycki, H., Hamel, F., Kiselev, A. and Ryzhik, L.. Quenching and propagation in KPP reaction-diffusion equations with a heat loss. Arch. Ration. Mech. Anal. 178 (2005), 5780.CrossRefGoogle Scholar
6Britton, N. F.. Essential Mathematical Biology (London: Springer-Verlag, 2003).CrossRefGoogle Scholar
7Cantrell, R. S. and Cosner, C.. Spatial Ecology via Reaction-Diffusion Equations, Ser. Math. Comput. Biol. (Chichester, UK: John Wiley and Sons, 2003).Google Scholar
8Chen, X.. Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations. Adv. Differ. Equ. 2 (1997), 125160.Google Scholar
9Chen, X. and Guo, J. S.. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326 (2003), 123146.CrossRefGoogle Scholar
10Chen, X. and Qi, Y.. Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis. SIAM J. Appl. Math. 69 (2008), 273282.CrossRefGoogle Scholar
11Chen, Y. Y., Guo, J. S. and Hamel, F.. Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity 30 (2017), 23342359.CrossRefGoogle Scholar
12Coville, J.. Maximum principle, sliding techniques and applications to nonlocal equations. Electron. J. Differ. Equ. 68 (2007), 23 pp. (electronic).Google Scholar
13Coville, J., Dávila, J. and Martínez, S.. Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244 (2008), 30803118.CrossRefGoogle Scholar
14Ding, W. and Huang, W. Z.. Traveling wave solutions for some classes of diffusive predator-prey models. J. Dynam. Differ. Equ. 28 (2016), 12931308.CrossRefGoogle Scholar
15Ducrot, A. and Magal, P.. Travelling wave solutions for an infection-age structured model with diffusion. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 459482.CrossRefGoogle Scholar
16Ducrot, A., Magal, P. and Ruan, S.. Travelling wave solutions in multigroup age-structure epidemic models. Arch. Ration. Mech. Anal. 195 (2010), 311331.CrossRefGoogle Scholar
17Fife, P.. Some nonclassical trends in parabolic and parabolic–like evolutions. In Trends in Nonlinear Analysis (eds. Kirkilionis, M., Krömker, S., Rannacher, R. and Tomi, F.), pp. 153191 (Berlin: Springer-Verlag, 2003).CrossRefGoogle Scholar
18Fu, S. C. and Tsai, J. C.. Wave propagation in predator-prey systems. Nonlinearity 28 (2015), 43894423.CrossRefGoogle Scholar
19Guo, J. S. and Hamel, F.. Front propagation for discrete periodic monostable equations. Math. Ann. 335 (2006), 489525.CrossRefGoogle Scholar
20Huang, W.. Traveling wave solutions for a class of predator-prey systems. J. Dynam. Differ. Equ. 24 (2012), 633644.CrossRefGoogle Scholar
21Huang, W.. A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J. Differ. Equ. 260 (2016), 21902224.CrossRefGoogle Scholar
22Huang, J., Lu, G. and Ruan, S.. Existence of traveling wave solutions in a diffusive predator-prey model. J. Math. Biol. 46 (2003), 132152.CrossRefGoogle Scholar
23Hutson, V., Martinez, S., Mischaikow, K. and Vickers, G. T.. The evolution of dispersal. J. Math. Biol. 47 (2003), 483517.CrossRefGoogle ScholarPubMed
24Kao, C. Y., Lou, Y. and Shen, W.. Random dispersal vs non-local dispersal. Discrete Contin. Dyn. Syst. 26 (2010), 551596.CrossRefGoogle Scholar
25Li, W. T. and Wu, S. L.. Traveling waves in a diffusive predator-prey model with Holling type-III functional response. Chaos Solitons Fractals 37 (2008), 476486.CrossRefGoogle Scholar
26Li, W. T. and Yang, F. Y.. Traveling waves for a nonlocal dispersal SIR model with standard incidence. J. Integral Equ. Appl. 26 (2014), 243273.CrossRefGoogle Scholar
27Li, W. T., Sun, Y. J. and Wang, Z. C.. Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11 (2010), 23022313.CrossRefGoogle Scholar
28Li, Y., Li, W. T. and Yang, F. Y.. Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 247 (2014), 723740.Google Scholar
29Li, W. T., Zhang, L. and Zhang, G. B.. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. 35 (2015), 15311560.CrossRefGoogle Scholar
30Li, W. T., Xu, W. B. and Zhang, L.. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete Contin. Dyn. Syst. 37 (2017), 24832512.CrossRefGoogle Scholar
31Li, W. T., Wang, J. B. and Zhao, X. Q.. Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28 (2018), 11891219.CrossRefGoogle Scholar
32Murray, J. D.. Mathematical Biology, II, Spatial models and biomedical applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18 (New York: Springer-Verlag, 2003).CrossRefGoogle Scholar
33Pan, S., Li, W. T. and Lin, G.. Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications. Z. Angew. Math. Phys. 60 (2009), 377392.CrossRefGoogle Scholar
34Shen, W. and Zhang, A.. Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249 (2010), 747795.CrossRefGoogle Scholar
35Sherratt, J. A.. Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal. SIAM J. Appl. Math. 76 (2016), 293313.CrossRefGoogle Scholar
36Sun, Y. J., Li, W. T. and Wang, Z. C.. Entire solutions in nonlocal dispersal equations with bistable nonlinearity. J. Differ. Equ. 251 (2011), 551581.CrossRefGoogle Scholar
37Sun, Y. J., Zhang, L., Li, W. T. and Wang, Z. C.. Entire solutions in nonlocal monostable equations: asymmetric case, Commun. Pure Appl. Anal., 18 (2019), 10491072.Google Scholar
38Thieme, H. R.. Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J. Math. Anal. 24 (1993), 407435.CrossRefGoogle Scholar
39Wang, M. and Lv, G.. Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay. Nonlinearity 23 (2010), 16091630.CrossRefGoogle Scholar
40Wu, C. C.. Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J. Differ. Equ. 262 (2017), 272282.CrossRefGoogle Scholar
41Yang, F. Y., Li, Y., Li, W. T. and Wang, Z. C.. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 19691993.Google Scholar
42Yang, F. Y., Li, W. T. and Wang, Z. C.. Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal. Real World Appl. 23 (2015), 129147.CrossRefGoogle Scholar
43Zhang, G. B., Li, W. T. and Wang, Z. C.. Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252 (2012), 50965124.CrossRefGoogle Scholar
44Zhang, L., Li, W. T. and Wu, S. L.. Multi-type entire solutions in a nonlocal dispersal epidemic model. J. Dynam. Differ. Equ. 28 (2016), 189224.CrossRefGoogle Scholar
45Zhang, T., Wang, W. and Wang, K.. Minimal wave speed for a class of non-cooperative diffusion-reaction system. J. Differ. Equ. 260 (2016), 27632791.CrossRefGoogle Scholar
46Zhang, L., Li, W. T. and Wang, Z. C.. Entire solutions in an ignition nonlocal dispersal equation: asymmetric kernel. Sci. China Math. 60 (2017), 17911804.CrossRefGoogle Scholar