Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T21:41:07.601Z Has data issue: false hasContentIssue false

A variational problem on subsets of ℝn

Published online by Cambridge University Press:  14 November 2011

Mihai Vornicescu
Affiliation:
S.I.S.S.A., via Beirut 2-4, 34014, Trieste, Italyand “Babeş-Bolyai”University, str. M. Kogalniceanu 1, 3400, Cluj-Napoca, Romania

Synopsis

We give an existence theorem for a nonconvex minimum problem of the Calculus of Variations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cellina, A.. Minimizing a functional depending on ∇u and on u. Ann. Inst. H. Poincare, Anal. Non Lineaire (to appear).Google Scholar
2Evans, L. C. and Gariepy, R. F.. Measure Theory and Fine Properties of Functions (Boca Raton: CRC Press, 1992).Google Scholar
3Gilbarg, D. and Trudinger, N. S.. Elliptic Partial Differential Equations of Second Order (Berlin: Springer, 1977).Google Scholar
4Goodman, J., Kohn, V. R. and Reyna, I.. Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Math. Engrg. 57 (1986), 107–27.Google Scholar
5Kawohl, B., Stara, J. and Wittum, G.. Analysis and numerical studies of a problem of shape design. Arch. Rational Meek Anal. 114 (1991), 349–63.CrossRefGoogle Scholar
6Murat, F. and Tartar, L.. Calcul des variations et homegenization. In Les Methodes de l'homogenization, Coll. de la Direction des Etudes et recherche de I'Electricité de France 57 (1985), 319–69.Google Scholar
7Thorpe, J. A.. Elementary Topics in Differential Geometry (New York: Springer. 1979).Google Scholar