Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T02:10:50.040Z Has data issue: false hasContentIssue false

Unique continuation properties of the nonlinear Schrödinger equation

Published online by Cambridge University Press:  14 November 2011

Bing-Yu Zhang
Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, U.S.A

Abstract

Consider the unique continuation problem for the nonlinear Schrödinger (NLS) equation

By using the inverse scattering transform and some results from the Hardy function theory, we prove that if uC(R; H1(R)) is a solution of the NLS equation, then it cannot have compact support at two different moments unless it vanishes identically. In addition, it is shown under certain conditions that if u is a solution of the NLS equation, then u vanishes identically if it vanishes on two horizontal half lines in the x–t space. This implies that the solution u must vanish everywhere if it vanishes in an open subset in the x–t space.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H.. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53 (1974), 249314.CrossRefGoogle Scholar
2Carleman, T.. Sur les systèmes linèaires aux dérivées partielles du premier ordre à deux variables. C. R. Acad. Sci. Paris 197 (1933), 471–4.Google Scholar
3Deift, P. and Trubowitz, E.. Inverse scattering on the line. Comm. Pure Appl. Math. 32 (1979), 121251.CrossRefGoogle Scholar
4Dym, H. and Mckean, H. D.. Gaussian Process, Fourier Transformation (New York: Academic Press, 1969).Google Scholar
5Evans, L. C. and Knerr, B. F.. Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities. Illinois J. Math. 23 (1979), 153–66.CrossRefGoogle Scholar
6Ginibre, J. and Velo, G.. On a class of nonlinear Schrödinger equations I, II. J. Funct. Anal. 32 (1981), 1–32; 3371.CrossRefGoogle Scholar
7Hörmander, J.. Uniqueness theroems for second order elliptic operators. Comm. Partial Differential Equations 8 (1983), 2164.Google Scholar
8Jerrison, D.. Carleman inequalities for the Dirac and Laplace operators and unique continuation. Adv. Math. 62 (1986), 118–34.CrossRefGoogle Scholar
9Jerrison, D. and Kenig, C.. Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. of Math. 121 (1985), 403–25.Google Scholar
10Kenig, C., Ruize, A. and Sogge, C.. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55 (1987), 329–47.CrossRefGoogle Scholar
11Kenig, C. and Sogge, D.. A note on unique continuation for Schrödinger's operators. Proc. Amer. Math. Soc. 103 (1988), 543–6.Google Scholar
12Martinson, L. K. and Pavlov, K. B.. The problem of the three-dimensional localization of thermal perturbations in the theory of nonlinear heat conduction. Comput. Math. Math. Phys. 12 (1972), 261–8.CrossRefGoogle Scholar
13Mizohata, S.. Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques. Mem. Coll. Sci. Univ. Kyoto, Ser. A 31 (1958), 219–39.Google Scholar
14Nirenberg, L.. Uniqueness in Cauchy problems for differential equations with constant leading coefficients. Comm. Pure Appl. Math. 10 (1957), 89105.CrossRefGoogle Scholar
15Saut, J.-C. and Scheurer, B.. Sur l'unicité du probléme de Cauchy et le prolongement unique pour de équations elliptiques à coefficients non localement bornés. J. Differential Equations 43 (1982), 2843.CrossRefGoogle Scholar
16Saut, J.-C. and Scheurer, B.. Unique continuation for some evolution equation. J. Differential Equations 66 (1987), 118–39.CrossRefGoogle Scholar
17Tsutsumi, M.. Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive wave equations. J. Differential Equations 42 (1981), 260381.CrossRefGoogle Scholar
18Zakharov, V. E. and Schabat, A. B.. Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34 (1972), 62–9.Google Scholar
19Zhang, B.-Y.. Unique continuation for the Korteweg–de Vries equation. SIAM J. Math. Anal. 23 (1992), 5571.CrossRefGoogle Scholar
20Zhang, B.-Y.. On propagation speed of evolution equations. J. Differential Equations 107 (1994), 290309.CrossRefGoogle Scholar