Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T20:35:21.256Z Has data issue: false hasContentIssue false

U-algebras and the Hahn–Banach extension theorem*

Published online by Cambridge University Press:  14 November 2011

Boris Lavrič
Affiliation:
Department of Mathematics, E.K. University of Ljubljana, Jadranska 19, Ljubljana 61000, Yugoslavia

Synopsis

An Archimedean unital f-algebra A is called a U-algebra if, for every aA, there exists an invertible element uA such that a = u |a|. Characterisations of a U-algebra are established. As an application, an extension theorem of Hahn–Banach type on modules over a U-algebra and over the complexification of a Dedekind complete unital f-algebra is given.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Beukers, F., Huijsmans, C. B. and Pagter, B. de. Unital embedding and complexifications of f-algebras. Math. Z. 183 (1983), 131144.Google Scholar
2Breckner, W. W. and Scheiber, E.. A Hahn–Banach type extension theorem for linear mappings into ordered modules. Mathematica 19(42) (1977), 1327.Google Scholar
3Ghika, A.. Prelungirea functionalelor generale liniare in module seminormate. St. cere. mat. 1 (1950), 251269.Google Scholar
4Gillman, L. and Henriksen, M.. Rings of continuous functions in which every finitely generated ideal is principal. Trans. Amer. Math. Soc. 82 (1956), 366391.Google Scholar
5Gillman, L. and Jerison, M.. Rings of continuous functions (Berlin: Springer, 1976).Google Scholar
6Huijsmans, C. B. and Pagter, B. de. Ideal theory in f-algebras. Trans. Amer. Math. Soc. 269 (1982), 225245.Google Scholar
7Huijsmans, C. B. and Pagter, B. de. Subalgebras and Riesz subspaces of an f-algebra. Proc.s London Math. Soc. 48 (1984), 161174.Google Scholar
8Lavrič, B.. On Freudenthal's spectral theorem (preprint).Google Scholar
9Luxemburg, W. A. J. and Zaanen, A. C.. Riesz Spaces I (Amsterdam: North-Holland, 1971).Google Scholar
10Vuza, D.. The Hahn-Banach extension theorem for modules over ordered rings. Rev. Roumaine Math. Pures Appl. 27 (1982), 989995.Google Scholar
11Zaanen, A. C.. Riesz Spaces II (Amsterdam: North-Holland, 1983).Google Scholar