Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Nandakumaran, A. K.
and
Rajesh, M.
2002.
Homogenization of a parabolic equation in perforated domain with Dirichlet boundary condition.
Proceedings Mathematical Sciences,
Vol. 112,
Issue. 3,
p.
425.
Cioranescu, Doina
Damlamian, Alain
and
Griso, Georges
2002.
Periodic unfolding and homogenization.
Comptes Rendus. Mathématique,
Vol. 335,
Issue. 1,
p.
99.
Gruais, Isabelle
2003.
Modelling of a fluid: homogenization and mixed scales.
Comptes Rendus. Mathématique,
Vol. 337,
Issue. 12,
p.
809.
Nechvátal, Luděk
2003.
On two-scale convergence.
Mathematics and Computers in Simulation,
Vol. 61,
Issue. 3-6,
p.
489.
Nechvátal, Luděk
2004.
Alternative Approaches to the Two-Scale Convergence.
Applications of Mathematics,
Vol. 49,
Issue. 2,
p.
97.
Bentalha, F.
Gruais, I.
and
Poliševski, D.
2006.
Homogenization of a conductive suspension in a Stokes–Boussinesq flow.
Applicable Analysis,
Vol. 85,
Issue. 6-7,
p.
811.
Lenczner, M.
and
Smith, R.C.
2007.
A two-scale model for an array of AFM’s cantilever in the static case.
Mathematical and Computer Modelling,
Vol. 46,
Issue. 5-6,
p.
776.
Calvo-Jurado, Carmen
and
Casado-Díaz, Juan
2007.
Nonlocal limits in the study of linear elliptic systems arising in periodic homogenization.
Journal of Computational and Applied Mathematics,
Vol. 204,
Issue. 1,
p.
3.
Bentalha, F.
Gruais, I.
and
Poliševski, D.
2008.
Diffusion in a highly rarefied binary structure of general periodic shape.
Applicable Analysis,
Vol. 87,
Issue. 6,
p.
635.
Cioranescu, D.
Damlamian, A.
Griso, G.
and
Onofrei, D.
2008.
The periodic unfolding method for perforated domains and Neumann sieve models.
Journal de Mathématiques Pures et Appliquées,
Vol. 89,
Issue. 3,
p.
248.
Cioranescu, D.
Damlamian, A.
and
Griso, G.
2008.
The Periodic Unfolding Method in Homogenization.
SIAM Journal on Mathematical Analysis,
Vol. 40,
Issue. 4,
p.
1585.
Damlamian, Alain
and
Meunier, Nicolas
2010.
The “strange term” in the periodic homogenization for multivalued Leray–Lions operators in perforated domains.
Ricerche di Matematica,
Vol. 59,
Issue. 2,
p.
281.
Casado-Díaz, Juan
Luna-Laynez, Manuel
and
Suárez-Grau, Francisco Javier
2010.
A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary.
Comptes Rendus. Mathématique,
Vol. 348,
Issue. 17-18,
p.
967.
Brassart, Matthieu
and
Lenczner, Michel
2010.
A two-scale model for the periodic homogenization of the wave equation.
Journal de Mathématiques Pures et Appliquées,
Vol. 93,
Issue. 5,
p.
474.
CASADO-DÍAZ, J.
LUNA-LAYNEZ, M.
and
SUÁREZ-GRAU, F. J.
2010.
ASYMPTOTIC BEHAVIOR OF A VISCOUS FLUID WITH SLIP BOUNDARY CONDITIONS ON A SLIGHTLY ROUGH WALL.
Mathematical Models and Methods in Applied Sciences,
Vol. 20,
Issue. 01,
p.
121.
Gruais, Isabelle
2010.
Modelling of sonic textures by homogenization.
Journal of Mathematics and Music,
Vol. 4,
Issue. 3,
p.
133.
Casado-Díaz, Juan
Luna-Laynez, Manuel
and
Suárez-Grau, Francisco J.
2011.
Estimates for the asymptotic expansion of a viscous fluid satisfying Navier's law on a rugous boundary.
Mathematical Methods in the Applied Sciences,
Vol. 34,
Issue. 13,
p.
1553.
Casado-Díaz, J.
Luna-Laynez, M.
and
Suárez-Grau, F. J.
2011.
BAIL 2010 - Boundary and Interior Layers, Computational and Asymptotic Methods.
Vol. 81,
Issue. ,
p.
57.
Yang, B.
Belkhir, W.
Dhara, R. N.
Lenczner, M.
and
Giorgetti, A.
2011.
Computer-aided multiscale model derivation for MEMS arrays.
p.
1/6.
Hui, Hui
Lenczner, Michel
Pillet, Emmanuel
and
Cogan, Scott
2012.
A two-scale model for one-dimensional arrays of cantilevers and its verification.
Mechatronics,
Vol. 22,
Issue. 5,
p.
538.