Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T02:01:43.855Z Has data issue: false hasContentIssue false

Two perturbation results for nondegenerate solutions of some semilinear Dirichlet problems*

Published online by Cambridge University Press:  14 November 2011

Mario Michele Coclite
Affiliation:
Dipartimento di Matematica, Università di Bari, Via Giustino Fortunato, Campus, 70125 Bari, Italy

Synopsis

The stability of nondegenerate solutions of some semilinear Dirichlet problems is studied. Two specific situations are considered: firstly, a singular perturbation of the differential operator; secondly, a perturbation of the nonlinear term using a term which also depends on the gradient of the solution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosetti, A.. A perturbation theorem for superlinear boundary value problems (Math. Res. Center, Univ. of Wisconsin, Madison, Technical Summery Report 1446, 1974).Google Scholar
2Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(1973), 349381.CrossRefGoogle Scholar
3Baiocchi, C. and Capelo, A.. Disequazioni variazionali e quasi variazionali. Applicazioni a problemi difrontiera libera, Vol. I, Quaderno U.M.I. 4, (Bologna: Pitagora, 1978).Google Scholar
4Bahri, A. and Berestycki, H.. A perturbation method in critical point theory and applications. Trans. Amer. Math. Soc. 267 (1981), 132.CrossRefGoogle Scholar
5Berger, M. S.. Nonlinearity and functional analysis (New York: Academic Press, 1977).Google Scholar
6Coclite, M. M.. Singular perturbations of some semilinear Dirichlet problems. Boll. Un. Mat. Ital. B(7) 2 (1988), 177200.Google Scholar
7Coclite, M. M. and Palmieri, G.. Multiplicity results for variational problems and applications. Boll. Un. Mat. Ital. B(7) 1 (1987), 347371.Google Scholar
8Candia, A. de and Fortunato, D.. Osservazioni su alcuni problemi ellittici non lineari. Rend. Istit. Mat. Univ. Trieste 17 (1985), 3046.Google Scholar
9Friedman, A. Singular perturbations for partial differential equations. Arch. Rational Mech. Anal. 29 (1968), 289303.CrossRefGoogle Scholar
10Greenlee, W. M.. Rate of convergence in singular perturbations. Ann. Inst. Fourier (Grenoble) 18 (1968), 135191.CrossRefGoogle Scholar
11Hofer, H.. Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261 (1982), 493514.CrossRefGoogle Scholar
12Huet, D.. Phéinomènes de perturbation singulière dans les probĺemes aux limites. Ann. Inst. Fourier (Grenoble) 10 (1960), 61151.CrossRefGoogle Scholar
13Huet, D.. Perturbations singulières relatives au problème de Dirichlet dans un demi-espace. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964), 425448.Google Scholar
14Lazer, A. C., Landesman, E. M. and Meyers, D. R.. On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence. J. Math. Anal. Appl. 52 (1975), 594614.CrossRefGoogle Scholar
15Lions, J. L.. Quelques méthodes de résolution des problèmes aux limites nonlinéaires (Paris: Dunod, 1969).Google Scholar
16Michajlov, V. P.. Equazioni differenziali alle derivate parziali (Moscow: MIR, 1984).Google Scholar
17Miranda, C.. Istituzioni di analisi funzionale lineare Vol. I (Bologna: Monografia U.M.I., Pitagora, 1978).Google Scholar
18Solimini, S.. Some remarks on the number of solutions of some nonlinear elliptic problems. Ann. Inst. H. Poincaré anal. Non-linéaire 2 (1985), 143156.CrossRefGoogle Scholar
19Struwe, M.. A note on a result of Ambrosetti and Mancini. Ann. Mat. Pura Appl. 131 (1982), 107115.CrossRefGoogle Scholar
20Vainberg, M. M.. Variational methods for the study of nonlinear operators (San Francisco: Holden-Day, 1964).Google Scholar
21Willem, M.. Perturbation des variétés critiques non dégénérées et oscillations non linéaires forcées (Preprint, Université catholique de Louvain, 1985).Google Scholar