Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:04:25.287Z Has data issue: false hasContentIssue false

Topological complexity of real Grassmannians

Published online by Cambridge University Press:  12 January 2021

Petar Pavešić*
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Jadranska 21, 1000, Slovenija ([email protected])

Abstract

We use some detailed knowledge of the cohomology ring of real Grassmann manifolds Gk(ℝn) to compute zero-divisor cup-length and estimate topological complexity of motion planning for k-linear subspaces in ℝn. In addition, we obtain results about monotonicity of Lusternik–Schnirelmann category and topological complexity of Gk(ℝn) as a function of n.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by the Slovenian Research Agency program P1-0292 and grants N1-0083, N1-0064.

References

Berstein, I.. On the Lusternik-Schnirelmann category of Grassmannians. Proc. Cambridge Philos. Soc. 79 (1976), 129134.CrossRefGoogle Scholar
Cornea, O., Lupton, G., Oprea, J. and Tanré, D.. Lusternik-Schnirelmann Category, AMS, Mathematical Surveys and Monographs, vol. 103 (2003).CrossRefGoogle Scholar
Costa, A. and Farber, M.. Motion planning in spaces with small fundamental groups. Commun. Contemp. Math., 12 (2010), 107119.10.1142/S0219199710003750CrossRefGoogle Scholar
Dutta, S. and Khare, S. S.. On second Stiefel-Whitney class of Grassmann manifolds and cuplength. J. Indian Math. Soc. 69 (2002), 237251.Google Scholar
Farber, M.. Topological complexity of motion planning. Discrete Comput. Geom. 29 (2003), 211221.CrossRefGoogle Scholar
Farber, M., Tabachnikov, S. and Sergey, Y.. Topological robotics: motion planning in projective spaces. Int. Math. Res. Not. 34 (2003), 18531870.CrossRefGoogle Scholar
Farber, M.. Topology of robot motion planning. In Morse theoretic methods in nonlinear analysis and in symplectic topology. (ed. Biran, P., Cornea, O. and Lalonde, F.). pp. 185230 (Springer, 2006).10.1007/1-4020-4266-3_05CrossRefGoogle Scholar
Farber, M.. Invitation to topological robotics (Zurich: EMS Publishing House, 2008).CrossRefGoogle Scholar
Govc, D., Marzantowicz, W. and Pavešić, P.. How many simplices are needed to triangulate a Grassmannian?, to appear in Topological Methods in Nonlinear Analysis (2020).CrossRefGoogle Scholar
Milnor, J. and Stasheff, J. D.. Characteristic classes (Princeton, N. J.: Princeton University Press; Tokyo: University of Tokyo Press, 1974).CrossRefGoogle Scholar
Pavešić, P.. Monotonicity of the Schwarz genus. Proc. AMS 148 (2020), 13391349.CrossRefGoogle Scholar
Pearson, K. J. and Zhang, T.. Topological complexity and motion planning in certain real Grassmannians. Appl. Math. Lett. 17 (2004), 499502.CrossRefGoogle Scholar
Stong, R.. Cup products in Grassmannians. Top. Appl. 13 (1982), 103113.CrossRefGoogle Scholar